首页|可提高检测精度的电力标识牌智能检测方法

可提高检测精度的电力标识牌智能检测方法

扫码查看
电力安全标识牌检测是智能电力安全作业管控系统的重要组成部分.为提高复杂电力场景下安全标识牌的检测精度,提出了一种基于改进YOLO的电力安全标识牌检测方法.在YOLO的基础上,通过增加预测层分辨率提升网络对小目标的预测能力.此外,引入索引池化机制,利用池化掩码限制无用信息的引入,提高了网络分类识别的精确度.试验结果表明,改进后的检测网络在电力标识牌测试集上的平均精度均值达到了 75.2%,比常规方法提高了 3.2%.所提智能检测方法能够提升电力标识牌的检测识别能力,有利于保障电力生产安全.
Intelligent Detection Method to Improve Detection Accuracy for Power Signboard
The detection of power safety signs is an important component of the intelligent power safety operation control system.To improve the detection accuracy of safety signs in complex power scenarios,a power safety sign detection method based on improved YOLO was proposed.On the basis of YOLO,the network's prediction ability for small targets was improved by increasing the resolution of the prediction layer.In addition,the introduction of index pooling mechanism and the use of pooling masks to limit the introduction of useless information improved the accuracy of network classification and recognition.The experimental results show that the average accuracy of the improved detection network on the power sign test set reaches 75.2%,which is 3.2%higher than the conventional method.The proposed intelligent detection method can improve the detection and recognition ability of power signs,which is conducive to ensuring the safety of power production.

power signboarddeep learningobject detectionindex poolingnetwork identification

朱建宝、桑顺、马青山、俞鑫春、张斌

展开 >

国网江苏省电力有限公司南通供电分公司,江苏南通 226006

上海交通大学电力传输与功率变换控制教育部重点实验室,上海 200240

江苏奥威信息系统工程有限公司,江苏南通 226007

电力标识牌 深度学习 目标检测 索引池化 网络识别

电力传输功率变换控制教育部重点实验室开放课题国网江苏省电力有限公司科技项目

2021AC03J2020054

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(1)
  • 6