首页|基于对齐自编码器的变压器声音异常检测研究

基于对齐自编码器的变压器声音异常检测研究

扫码查看
为了实现变压器异常声音的快速准确检测,减少人工采集和标注异常声信号的不便,提出了一种对齐自编码器模型.首先,对训练集和测试集应用了不同的分帧方式,训练集采用重叠分帧,便于提取完整的特征,测试集采用非重叠分帧,提高了检测速度;其次提出混合的激活函数取代单一的激活函数,再采用胡伯损失替代常用的均方误差,减少了迭代次数,增加了模型的鲁棒性;最后提出序列对齐方法来构造对齐自编码器,利用三电平削波和相关性计算来估计预测序列相对测试序列的延时,通过反向延时补偿预测序列来让两种序列对齐,进而提高了预测精度.试验结果表明,对齐自编码器提高了异常声音检测的精度和速度,检测的各项评分指标都达到了 95%以上,能够为工程应用提供很好的参考.
Research on Transformer Sound Anomaly Detection Based on Aligned Auto-encoder
In order to realize the fast and accurate detection of abnormal sound of transformer and reduce the inconvenience of manual acquisition and labeling of abnormal sound signals,an aligned auto-encoder model was proposed.Firstly,the different framing methods were applied to the training set and the test set.The training set used overlapping framing to facilitate the extraction of complete features,and the test set used non-overlapping framing to improve the detection speed;secondly,the mixed activation function was proposed to replace the single activation function,and Huber loss was used to replace the common mean square error,which reduced the number of iterations and increased the robustness of the model;finally,a sequence alignment method was proposed to construct an aligned auto-coder.The three-level clipping and correlation calculation were used to estimate the delay of the prediction sequence relative to the test sequence.The prediction sequence was aligned by the reverse delay compensation to improve the prediction accuracy.The test results show that the aligned auto-encoder improves the accuracy and speed of abnormal sound detection,and the detection of each scoring index reaches more than 95%,which can provide a good reference for engineering applications.

aligned autoencoderanomaly detectiondifferentiated framingmixed activation functionsHuber lossdelay effect

刘云辉、王昕

展开 >

上海交通大学电子信息与电气工程学院教学发展与学生创新中心,上海 200240

对齐自编码器 异常检测 差异化分帧 混合激活函数 胡伯损失 时延效应

国家自然科学基金面上项目资助

61673268

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(1)
  • 3