首页|基于多智能体深度强化学习的配电网无功电压控制策略

基于多智能体深度强化学习的配电网无功电压控制策略

扫码查看
为满足分布式电源高比例接入配电网对电压控制的需求,提出了一种基于多智能体深度强化学习的配电网无功-电压控制策略.首先,以配电网节点电压偏移最小为优化目标构建数学模型,将每个分布式光伏逆变器建模为一个智能体;然后,通过配电网分区把逆变器协同控制问题建为各个子区域的去中心化部分可观测马尔科夫决策过程,采用多智能体双延迟深度确定性策略梯度算法求解实时优化控制策略;最后在IEEE 33节点系统上进行仿真测试.结果表明,所提方法在配电网无功电压控制上具备有效性.
Voltage Reactive Control Strategy in Distribution Network Based on Multi-agent Deep Reinforcement Learning
In order to meet the demand of voltage control for distribution networks with high proportion access of distributed power supply,a distribution network voltage reactive control strategy based on multi-agent deep reinforcement learning was proposed.Firstly,the mathematical model was constructed with the objective of minimizing the voltage offset of distribution network nodes,and each distributed solar inverter was modeled as an agent;then,by partitioning the distribution network,the inverter collaborative control problem was established as a decentralized and observable Markov decision process for each sub region;the multi-agent twin delayed deep deterministic policy gradient algorithm was used to solve the real-time optimization control strategy;finally,and the simulation testing was conducted on an IEEE 33 node system.The results indicate that the proposed method is effective in voltage reactive controlling in distribution networks.

distribution networkvoltage reactive controldistributed generationmulti-agent deep reinforcement learningMarkov decision process

杨一飞

展开 >

华南理工大学电力学院,广东广州 510640

配电网 无功电压控制 分布式电源 多智能体深度强化学习 马尔科夫过程

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(2)
  • 12