首页|基于轻量化的YOLOv5的PCB缺陷检测算法

基于轻量化的YOLOv5的PCB缺陷检测算法

扫码查看
针对在印刷电路板(printed circuit board,PCB)缺陷检测上网络模型过大且精度较低的缺点,使用Python在Windows上提出了一种基于YOLOv5l改进的PCB缺陷检测算法,并对六种常见的缺陷作为数据集进行检测.采用轻量化网络EfficientNetLite0作为模型的骨干网络,并通过对特征金字塔加入P2检测头来获取更小的目标特征.试验结果表明:所提算法对印刷电路板的缺陷有识别精度高、模型小和检测快速的特点;单张图片检测速度达到43.6 ms,模型大小为49.1 MB,所有类别精度指标达到98.9%.所提算法为未来部属在边缘设备上的工业缺陷检测提供了新思路.
PCB Defect Detection Algorithm Based on Lightweight YOLOv5
A printed circuit board(PCB)defect detection algorithm based on YOLOv5l improvement was proposed using Python on Windows to address the drawbacks of large network models and low accuracy in PCB defect detection.Six common defects were detected as datasets.Use the lightweight network EfficientNetLite0 as the backbone network of the model,and add P2 detection head to the feature pyramid to obtain smaller target features.The experimental results indicate that the proposed algorithm has the characteristics of high recognition accuracy,small model size,and fast detection for defects in printed circuit boards;the detection speed of a single image reaches 43.6 ms,the model size is 49.1 MB,and the accuracy indices of all categories reach 98.9%.The proposed algorithm provides a new idea for future industrial defect detection on edge device.

lightweight networkedge devicePCB defect detectionEfficientNetLite0YOLOv5

许皓翔、殳国华

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

轻量化网络 边缘设备 PCB缺陷检测 EfficientNetLite0 YOLOv5

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(2)
  • 6