首页|基于机器视觉技术和多尺度时空特征的监控视频人体异常行为识别

基于机器视觉技术和多尺度时空特征的监控视频人体异常行为识别

扫码查看
监控容易受到光流动态特征影响,无法精准识别人体异常行为.为此,提出了基于机器视觉技术和多尺度时空特征的监控视频人体异常行为识别方法.构建异常行为多尺度时空特征矩阵,剔除无用兴趣点;提取多尺度时空特征矩阵连续帧人体轮廓高与宽、人体姿态变化的前一帧与当前帧及人体轮廓点到轮廓中心距离;通过判断跳、蹲和爬异常行为轨迹,实现对人体异常行为识别.试验结果表明,所提方法识别的跳、蹲、爬异常行为与实际数值最大误差分别为0.2 m、0.02 m和0.01 m,具有精准的识别效果.
Recognition of Abnormal Human Behavior in Surveillance Video Based on Machine Vision Technology and Multiscale Spatiotemporal Features
Monitoring is easily affected by the dynamic characteristics of optical flow and cannot accurately identify abnormal human behavior.To this end,a method for identifying abnormal human behavior in surveillance videos based on machine vision technology and multi-scale spatiotemporal features was proposed.A multi-scale spatiotemporal feature matrix for abnormal behavior was constructed,and useless interest points were eliminated;the multi-scale spatiotemporal feature matrices for continuous frames of human contour height and width,the previous and current frames of human posture changes,and the distance from human contour points to contour centers were extracted;by identifying abnormal behavior trajectories of jumping,squatting,and crawling,the recognition of human abnormal behavior was achieved.The experimental results show that the maximum errors between the jumping,squatting,and crawling abnormal behaviors identified by the proposed method and the actual values are 0.2 m,0.02 m,and 0.01 m,respectively,indicating a precise recognition effect.

machine vision technologymulti-scale spatiotemporal characteristicssurveillance videoabnormal human behaviorrecognition

郭泰龙、王黎明、韩星程

展开 >

中北大学信息与通信工程学院,山西太原 030051

机器视觉技术 多尺度时空特征 监控视频 人体异常行为 识别

国家自然科学基金青年基金山西省应用基础研究计划(2021)

6220340520210302124545

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(2)
  • 5