首页|基于变分自编码高斯混合模型的海量新能源出力场景生成方法

基于变分自编码高斯混合模型的海量新能源出力场景生成方法

扫码查看
最近几年,风电、光伏等各种新能源在电力系统中的接入率不断攀升,对于新能源出力的不确定性进行精确度更高的建模愈发重要.为了简化随机场景生成步骤,提高场景生成的效率和精度,采用数据驱动的建模思路,以无监督变分自动编码高斯混合模型为基础,构建了一种全新的海量新能源出力随机场景生成方法.将高维训练集数据经编码器映射到结构良好的低维隐变量空间进行概率建模、抽样,再经解码器还原回原有维度,得出场景集.与已有的概率方法相比,这一方法能够在没有监督的情况下完成风电、光伏训练数据的时空特征、波动性特征的学习,从中提取出具有典型意义的出力曲线,并快速形成与观测特相契合的数据集,并不需要实施场景约简.经南方某省电网分地市实际历史新能源出力算例的检验,证明所提算法是可靠、合理和有效的.
Method for Generating Massive New Energy Output Scenarios Based on Variational Autocoding and Hidden Variable Modeling
In recent years,the access rate and frequency of various new energy sources such as wind power and photovoltaic in the power system have been continuously increasing,making it increasingly important to implement more accurate modeling for the uncertainty of new energy output.In order to simplify the generation steps of random scenes and improve the efficiency and accuracy of scene generation,a data-driven modeling approach was adopted,based on the unsupervised variational automatic encoding Gaussian mixture model,to create a new method for generating massive new energy output random scenes.The high-dimensional training set data was mapped into a well-structured low dimensional hidden variable space through an encoder for probability modeling,sampling.And then restore it back to the original dimension through a decoder to obtain the scene set.Compared with existing probability methods,the method could complete the learning of spatiotemporal and volatility features of wind power and photovoltaic training data without supervision,extract typical output curves from them,and quickly form a dataset that matched the observation characteristics without the need for scene reduction.The proposed algorithm has been verified to be reliable,reasonable,and effective through the actual historical new energy output calculation of a certain southern province's power grid city.

scenario analysis methodvariational automatic encoderdeep learningscene generationnew energy power system

宋晓维

展开 >

华南理工大学电力学院,广东广州 510641

场景分析法 变分自动编码器 深度学习 场景生成 新能源电力系统

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(3)
  • 9