首页|基于数据驱动的低感知度配电网动态无功优化

基于数据驱动的低感知度配电网动态无功优化

扫码查看
由于配电网网络通信基础设施较差,且节点监控覆盖不完全,因此存在无法实时采集数据的节点,导致无法进行传统无功优化.为此,提出了一种数据驱动的低感知度配电网动态无功优化方法.通过K-means算法聚类节点历史负荷,对非实时观测节点依据特征分类;选择最优超参数基于时间卷积网络进行量测数据补全;最终通过改进后的社交网络搜索算法实现动态无功优化,并仿真验证了方法的有效性.
Dynamic Reactive Power Optimization of Low Perception Distribution Networks Based on Data-driven Approach
Due to poor communication infrastructure in the distribution network and incomplete node monitoring coverage,there are nodes that cannot collect data in real-time,resulting in the inability to perform traditional reactive power optimization.To this end,a data-driven low perception dynamic reactive power optimization method for distribution networks was proposed.Cluster node historical loads using K-means algorithm,and classify non real-time observation nodes based on features;the optimal hyper parameters were selected to complete the measurement data based on the time convolution network;finally,the improved social network search algorithm was used to achieve dynamic reactive power optimization,and the effectiveness of the method was verified through simulation.

temporal convolutional networksocial network search algorithmK-means algorithmdynamic reactive power optimizationdata driven

徐晓春、卜强生、俞婧雯、赵娜、王涛、窦晓波

展开 >

国网江苏省电力有限公司淮安供电分公司,江苏淮安 223001

国网江苏省电力公司电力科学研究院,江苏南京 210000

东南大学电气工程学院,江苏南京 210096

时间卷积网络 社交网络搜索算法 K-means算法 动态无功优化 数据驱动

国家电网江苏省电力公司科技项目

J2021036

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(3)
  • 8