首页|基于CTA-GPR的电动汽车充电负荷区间预测方法

基于CTA-GPR的电动汽车充电负荷区间预测方法

扫码查看
针对大容量电池与个体充电行为具有高度随机性,导致电动汽车充电负荷难以获得准确可靠的预测精度,同时存在缺乏量化充电负荷预测不确定性的问题,提出了一种短期单步电动汽车充电负荷区间预测新方法.首先构建了时空特征融合和注意力机制改进的混合模型;然后引入高斯过程回归进行优化,并提出了一种混合改进方法对电动汽车充电负荷进行区间预测分析;最后根据某市35 d的电动汽车充电负荷数据进行验证.试验结果显示,基于CTA-GPR的电动汽车充电负荷区间预测方法获得了高的点预测精度、合适的预测置信区间且概率预测结果可靠,表明了所提方法的有效性.
Method for Predicting Charging Load Range of Electric Vehicle Based on CTA-GPR
Aiming at the high randomness of large capacity batteries and individual charging behavior,which made it difficult to obtain accurate and reliable prediction accuracy for electric vehicle(EV)charging loads,at the same time there was a lack of uncertainty in quantifying charging load prediction,a new short-term single step electric vehicle charging load range prediction method was proposed.Firstly,a hybrid model combining spatiotemporal feature fusion and improved attention mechanism was constructed;then,Gaussian process regression was introduced for optimization,and a hybrid improvement method was put forward for range prediction analysis of EV charging load;finally,a verification was made based on the 35 d electric vehicle charging load data of a certain city.The experimental results show that the electric vehicle charging load range prediction method based on CTA-GPR achieves higher point prediction accuracy,appropriate prediction confidence interval,and reliable probability prediction results,indicating the effectiveness of the proposed method.

deep learningattention mechanismelectric vehicle(EV)charging loadrange prediction

易晓东

展开 >

国网江苏省电力公司江北新区供电公司,江苏南京 211899

深度学习 注意力机制 电动汽车 充电负荷 区间预测

国家重点研发计划项目国网江苏省电力有限公司重点科技项目

2018YFB1500800J2020082

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(4)