首页|基于BiLSTM-CNN网络的电动汽车动力电池单体健康状态估算方法

基于BiLSTM-CNN网络的电动汽车动力电池单体健康状态估算方法

扫码查看
数据驱动的电动汽车电池单体健康状态估算方法已成为目前研究热点,但实际应用中的传感器数据质量不高以及传感器采样频率低的问题会导致模型精度降低.为了从实际的充电曲线中准确提取锂离子电池老化信息,提出了一种新的深度学习算法.首先,选取容量增量曲线作为模型的输入参数;其次,设计了一种融合双向长短时记忆网络和卷积神经网络的深度学习模型;最后,通过在牛津锂离子电池数据集模拟真实充电数据,验证了模型的精度.试验结果表明,所提出的模型能够基于实际工况的数据准确性估算电池健康状态,有助于提升电动汽车电池系统的安全性和可靠性.
Method for Estimating the Health Status of Electric Vehicle Power Battery Based on BiLSTM-CNN Network
The estimation method of individual health status of data-driven electric vehicle batteries has become a current research hotspot,but the low quality of sensor data and low sampling frequency of sensors in practical applications can lead to a decrease in model accuracy.A new deep learning algorithm was proposed to accurately extract the aging information of lithium-ion batteries from actual charging curves.Firstly,the capacity increment curve was selected as the input parameter of the model;secondly,a deep learning model was designed that integrated bidirectional long short-term memory network and convolutional neural network;finally,the accuracy of the model was verified by simulating real charging data in the Oxford lithium-ion battery dataset.The experimental results indicate that the proposed model can accurately estimate the health status of batteries based on actual operating conditions,which helps to improve the safety and reliability of electric vehicle battery systems.

electric vehicle batteriesstate of health estimationdeep learning

张君宇、时雨、高天、吴奇志、王龙飞

展开 >

东北电力大学电气工程学院,吉林吉林 132011

国网吉林省电力有限公司经济技术研究院,吉林长春 130022

国网浙江省电力有限公司金华供电公司,浙江金华 321017

电动汽车电池 健康状态估算 深度学习

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(4)