首页|基于LOF-GMM方法的电网异常数据动态辨识及分析

基于LOF-GMM方法的电网异常数据动态辨识及分析

扫码查看
为了进一步提高电网异常数据动态辨识精度,结合高斯混合模型,并利用邻域局部异常因子来确定此点是否属于异常数据,设计了一种基于邻域局部异常因子-高斯混合模型聚类方法的电网异常数据动态辨识方法.研究结果表明:设计的邻域局部异常因子-高斯混合模型聚类算法满足了配电网大数据一体化动态清洗过程需要,获得更高精度的负荷预测结果,有助于大幅增强配电网的响应能力.设计的方法实现了缺失数据填补精度与速度平衡,具有较好工程应用价值.
Dynamic Identification and Analysis of Abnormal Data in Power Grid Based on LOF-GMM Method
In order to further improve the dynamic identification accuracy of power grid abnormal data,a dynamic identification method of power grid abnormal data based on the clustering method of neighborhood local abnormal factors-Gaussian mixture model was designed by combining the Gaussian mixture model and using the neighborhood local abnormal factors to determine whether the point belongs to abnormal data.The research results show that the designed neighborhood local anomaly factor-Gaussian mixture model clustering algorithm effectively meets the needs of the dynamic cleaning process of distribution network big data integration,obtains more accurate load forecasting results,and helps to significantly enhance the responsiveness of the distribution network.The designed method achieves a balance between accuracy and speed in filling missing data,and has good engineering application value.

distribution networkdata cleaningabnormal data identificationgaussian mixture modelrandom forest

张懿操、陆俊、洪德华、吴禹

展开 >

国网安徽省电力有限公司信息通信分公司,安徽合肥 230061

国网电科院有限公司信息系统集成分公司,江苏南京 211106

配电网 数据清洗 异常数据辨识 高斯混合模型 随机森林

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(4)