首页|基于PCA-Adaboost-GBDT的短期风电功率预测

基于PCA-Adaboost-GBDT的短期风电功率预测

扫码查看
为解决单一预测模型难以准确预测风电功率的问题,提出了一种基于主成分分析(principal component analysis,PCA)-自适应增强(adaptive boosting,Adaboost)-梯度提升树(gradient boosting decision tree,GBDT)的风电功率短期预测方法.使用 PCA 方法对数据降维分析,使用Adaboost-GBDT组合模型对风电功率数据进行训练.结果表明,所提算法在准确性和效率方面都具有明显的优势.研究结果为风电功率准确预测提供参考与借鉴.
Short-term Wind Power Prediction Based on PCA-Adaboost-GBDT
To solve the problem of difficulty in accurately predicting wind power using a single prediction model,a short-term wind power prediction method based on principal component analysis(PCA),adaptive boosting(Adaboost),and gradient boosting decision tree(GBDT)was proposed.The PCA method was used to reduce the dimension of the data,and the Adaboost-GBDT combined model was used to train the wind power data.The results show that the proposed algorithm has significant advantages in accuracy and efficiency.The research results provide reference and guidance for accurate prediction of wind power.

wind powerpower predictiongradient boosting decision tree(GBDT)adaptive boosting(Adaboost)combined model

郑伟宏、朱峰刚、王小娟、胡兵、薛萌萌

展开 >

新疆工程学院,新疆乌鲁木齐 830023

风电功率 功率预测 梯度提升树 自适应增强 组合模型

新疆维吾尔自治区自然科学基金项目自治区区域协同创新专项(科技援疆计划)自治区大学生创新创业训练计划项目

2021D01A662021E02044202210994008

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(4)