首页|基于嵌入式的车牌超分辨率识别算法

基于嵌入式的车牌超分辨率识别算法

扫码查看
在真实拍摄场景下,受成像设备性能以及远距离拍摄的限制,采集到的车牌的像素会变少.提升成像设备的质量成本较高.由于存在远距离的场景,因此对像素较少的车牌进行超分辨率重建至关重要.为此,提出了基于Atlas200DK嵌入式设备的车牌超分辨率识别算法.整个网络的推理过程均在Atlas200DK嵌入式开发板上进行,在含有远距离和模糊的自然场景下实测.结果表明:检测速度为33 fps,车牌定位准确率为99.2%,车牌识别准确率较直接识别提高了 10.6个百分点,达到91.9%.算法可以在不增加成本和不损失精度的情况下提高车牌识别的准确率,对于智慧交通的大规模应用具有重要意义.
Embedded Based License Plate Super-resolution Recognition Algorithm
In real shooting scenarios,due to the limitations of imaging equipment performance and long-distance shooting,the number of pixels collected for license plates will decrease.Improving the quality of imaging equipment incurs high costs.Due to involve long-distance scenes,therefore,super-resolution reconstruction of license plates with fewer pixels is crucial.To this end,the super-resolution recognition algorithm for license plates based on the Atlas200DK embedded device was proposed.The inference process of the entire network was conducted on the Atlas200DK embedded development board,and was detected in natural scenes containing long-distance and fuzzy information.The results show that the detection speed is 33 fps,the accuracy of license plate positioning is 99.2%,and the accuracy of license plate recognition is improved by 10.6 percentage point compared to direct recognition,reaching 91.9%.The algorithm can improve the accuracy of license plate recognition without increasing costs and losing accuracy,which is of great significance for the large-scale application of intelligent transportation.

embeddedheterogeneous computing architectureYOLOX network

管旭旭、张峰、张士文

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

嵌入式 异构计算架构 YOLOX网络

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(4)
  • 1