首页|基于专家规则的改进LSTM神经网络微电网负荷预测算法设计

基于专家规则的改进LSTM神经网络微电网负荷预测算法设计

扫码查看
针对传统BP神经网络算法在微电网负荷预测中由于系统复杂程度较高、耦合现象较明显以及扰动影响等出现的负荷预测效率不高、准确度不足等问题,设计了一种基于专家规则的改进长短期记忆神经网络负荷预测算法.利用长短期记忆神经网络替代原有的BP神经网络负荷预测算法,以及利用历史时序数据对微电网中的负荷进行预测,提高了预测准确度;引入专家规则,对长短期记忆神经网络中的隶属度参数进行实时整定;利用专家规则对先验知识进行整理和归纳,并匹配相应的特殊化机制对参数进行优化,提高了负荷预测精度与预测效率.在MATLAB仿真平台中搭建微电网负荷预测的数字仿真模型,与传统BP神经网络算法和模型预测算法相比,改进长短期记忆神经网络可将负荷预测准确度和预测效率提高至95%以上,改善了BP神经网络在负荷预测方面的不足,提高了负荷预测的准确度与效率.
Algorithm Design for Improved LSTM Neural Network Microgrid Load Prediction Based on Expert Rules
A modified long short-term memory(LSTM)neural network load prediction algorithm based on expert rules was designed to address the problems of low efficiency and accuracy in load forecasting in microgrids caused by high system complexity,obvious coupling phenomena,and disturbance effects in traditional BP neural network algorithms.The use of LSTM neural networks to replace the original BP neural network load prediction algorithm,as well as the use of historical time series data to predict the load in microgrids,improved the accuracy of prediction;the expert rules were introduced for real-time tuning of membership parameters in LSTM neural networks;by utilizing expert rules to organize and summarize prior knowledge,and matching corresponding specialization mechanisms to optimize parameters,the accuracy and efficiency of load forecasting were improved.Building a digital simulation model for microgrid load prediction in MATLAB simulation platform,and compared with traditional BP neural network algorithm and model prediction algorithm,the improved LSTM neural network can improve the accuracy and efficiency of load prediction to over 95%,improve the shortcomings of BP neural network in load prediction,and enhance the accuracy and efficiency of load prediction.

microgridload forecastinglong short-term memory neural networkexpert rulesaccuracy

季天瑶、程志伟

展开 >

华南理工大学电力学院,广东 广州 510641

微电网 负荷预测 长短期记忆神经网络 专家规则 准确度

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(6)