首页|基于深度学习和知识图谱的变电站设备故障智能诊断

基于深度学习和知识图谱的变电站设备故障智能诊断

扫码查看
基于深度学习网络和知识图谱技术,提出了一种关联电力设备多模态信息故障诊断方法.对采集的数据提取融合并构建一个多模态信息的知识图谱,利用YOLOv4算法提取电气设备故障库的先验框参数,将多模态信息知识图谱与YOLOv4算法视觉检测结合并应用到电气主设备进行故障诊断.试验结果证明,所提方法可以实现电气主设备故障智能化诊断,相比其他诊断算法精度提高约18.2%,能够提高电网运行维护效率.
Intelligent Diagnosis of Substation Equipment Faults Based on Deep Learning and Knowledge Graph
A multi-modal information fault diagnosis method for the associated power equipment was proposed based on deep learning network and knowledge graph technology.The collected data was extracted and fused to construct a knowledge graph of multimodal information.The YOLOv4 algorithm was used to extract the prior box parameters of the electrical equipment fault library.The multimodal information knowledge graph was combined with the YOLOv4 algorithm for visual detection and applied to the diagnosis of main electrical equipment faults.The experimental results show that the proposed method can achieve intelligent diagnosis of main electrical equipment faults,with an accuracy improvement about 18.2%compared to that of other diagnostic algorithms,and can raise the efficiency of power grid operation and maintenance.

deep learningknowledge graphmultimodalelectrical equipmentintelligent diagnosis

尚明远、罗锋、魏艳霞、许陈德、邓祺

展开 >

广东电网有限责任公司广州供电局,广东 广州 510735

深度学习 知识图谱 多模态 电气设备 智能诊断

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(6)