首页|基于数据增强的变压器机械故障声纹识别方法

基于数据增强的变压器机械故障声纹识别方法

扫码查看
在电力设备声纹监测领域,故障音频样本数据规模较小是一大难题.因此,提出了一种基于数据增强的变压器机械故障声纹识别方法.首先利用音频离线处理手段对音频样本进行一次增强,再利用波形生成对抗网络合成新的音频样本,最后使用增强后的样本训练循环神经网络实现声纹识别.在变压器上模拟机械故障,收集变压器不同工况下的音频样本用于测试.与其他音频生成方法相比,所提方法生成样本质量更高;单标签时长处于30-60 s区间时,可生成2倍有效样本.增强后识别准确率提升了 2.95个百分点.试验结果表明:所提方法能有效扩充电力设备声纹样本,提高声纹识别准确率.
Voiceprint Recognition of Mechanical Faults in Transformers Based on Data Enhancement
In the field of power equipment voiceprint monitoring,the small scale of fault audio sample data is a major challenge.Therefore,a data enhanced method for transformer mechanical fault voiceprint recognition was proposed.Firstly,offline audio processing was used to enhance the audio samples,followed by the synthesis of new audio samples using wave generative adversarial network(WaveGAN).Finally,a recurrent neural network(RNN)was trained using the enhanced samples to achieve voiceprint recognition.The mechanical faults were simulated on transformers and audio samples were collected from transformers under different operating conditions for testing.Compared with other audio generation methods,the proposed method generates higher sample quality;when the duration of a single label is in the range of 30~60 s,it can generate twice the number of valid samples.After enhancement,the recognition accuracy increased by 2.95 percentage point.The experimental results show that the proposed method can effectively expand the voiceprint samples of power equipment and improve the accuracy of voiceprint recognition.

transformermechanical fault diagnosisdata enhancementvoiceprint recognitiongenerative adversarial network(GAN)recurrent neural network(RNN)

李嘉宁、李喆、陈海威、陆忻

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

中国能建广西电力设计研究院有限公司,广西南宁 530022

变压器 机械故障诊断 数据增强 声纹识别 生成对抗网络 循环神经网络

2024

电气自动化
上海电气自动化设计研究所有限公司 上海市自动化学会

电气自动化

CSTPCD
影响因子:0.377
ISSN:1000-3886
年,卷(期):2024.46(6)