首页|改进灾变遗传算法在无功优化规划中的应用

改进灾变遗传算法在无功优化规划中的应用

Application of Improved Catastrophic Genetic Algorithms in Optimal Reactive Power Planning

扫码查看
提出了一种改进灾变遗传算法.该算法针对常规灾变算子局部搜索能力不足和收敛性差的缺点,提出了当前进化中最优个体灾变范围的概念,比常规灾变原理缩小了灾变范围,提高了灾变的针对性.此外,为提高遗传算法的收敛性能,设计了与进化代数相关的交叉概率和与个体适应度相关的变异概率.IEEE 30节点系统算例表明,该算法具有良好的全局性能、收敛速度和收敛稳定性,适合求解电力系统的无功优化问题.
A new improved catastrophic genetic algorithm (ICGA) is proposed. According to the defects of insufficient local searching ability and unsatisfactory convergence of conventional catastrophic operator, a concept of optimal individual catastrophic region in current evolution is proposed, so the catastrophic region is decreased than that in conventional catastrophe principle and the pertinence to the catastrophe is improved. In addition, to improve the convergence of genetic algorithm, the computing formula of crossover probability related to evolutional generations and the computing formula of mutation probability related to individual fitness are designed. Calculation results of IEEE 30-bus system show that the proposed algorithm possesses satisfied global performance, high convergence speed and stable convergence performance, so it is suitable to solve the optimal reactive power planning.

genetic algorithmscatastropheoptimal reactive power planning

林广明、欧阳森、曾江、蒋金良

展开 >

华南理工大学,电力学院,广东省广州市510640

遗传算法 灾变 无功优化规划

国家自然科学基金

B05-B5070310

2010

电网技术
国家电网公司

电网技术

CSTPCDCSCD北大核心
影响因子:2.821
ISSN:1000-3673
年,卷(期):2010.34(4)
  • 14
  • 16