首页|考虑新能源发电不确定性的含微电网群共享储能优化调度

考虑新能源发电不确定性的含微电网群共享储能优化调度

扫码查看
随着具有不确定性的可再生能源在微电网中渗透率日益提高,微电网新能源消纳所面临的挑战越来越大,而共享储能与微电网群的协同运行是提高其消纳能力的有效手段.为了解决不确定环境下微电网群与共享储能协同调度问题,提出了一种考虑新能源发电不确定性的优化调度模型:首先,利用基于马尔科夫链蒙特卡洛算法的日状态转移过程集合生成方法,和基于条件生成对抗网络的日场景生成方法,生成周净发电功率典型场景.进而使用生成的典型场景作为运行模拟场景,以共享储能运营商为主体,以各微电网为从体,构建一主多从博弈优化调度模型,其中主体调整共享储能容量租赁价格以追求最大利润,从体响应租赁价格,调整租赁容量方案及运行计划以最小化自身用电成本.然后,设计了一种基于启发式算法的分布式迭代求解方法来求解所提模型.最后通过算例验证了所提模型的有效性.
Optimal Dispatching Strategy of Shared Energy Storage With Multi-microgrid Considering Uncertainty of New Energy Generation
With the increasing penetration rate of the uncertain renewable energy in the microgrids,the challenges of the new energy accommodation in the microgrids has been growing,so the collaborative operation of the shared energy storage and the multi-microgrid is an effective means to improve their consumption ability.To solve the coordinated dispatch problem of the multi-microgrid and the shared energy storage in the uncertain conditions,an optimal dispatching model considering the uncertainty of the new energy generation is proposed.Firstly,the typical scenarios of the weekly net generation power are generated by a daily state transition process collection generation based on the Markov Chain Monte Carlo algorithm and a daily scenario generation method based on the conditional generative adversarial networks.Subsequently,using the generated typical scenarios as the operational simulation scenarios,an optimization dispatching model with single-leader and multi-follower game is constructed,where the shared energy storage operator is the leader and the microgrids are the followers.In this model,the leader adjusts the leasing prices of the shared energy storage capacity to pursuit the maximum profit,while the followers adjust the leasing capacity schemes and operation plans in response to the leasing prices in order to minimize their own electricity consumption costs.Furthermore,to solve the proposed model,a distributed iterative solution method based on a heuristic algorithm is designed.Finally,the effectiveness of the proposed model is verified by the application experiment.

shared energy storagemulti-microgridrenewable generation uncertaintyconditional generative adversarial networksstackelberg game

陈曦、付文龙、张海荣、张赞宁、王仁明、李佳裕

展开 >

三峡大学电气与新能源学院,湖北省宜昌市 443002

梯级水电站运行与控制湖北省重点实验室(三峡大学),湖北省 宜昌市 443002

中国长江电力股份有限公司,湖北省 宜昌市 443133

智慧长江与水电科学湖北省重点实验室,湖北省宜昌市 443133

展开 >

共享储能 微电网群 新能源发电不确定性 条件生成对抗网络 主从博弈

国家自然科学基金项目湖北省自然科学基金项目智慧长江与水电科学湖北省重点实验室开放基金项目

519090102022CFD170ZZH2302001

2024

电网技术
国家电网公司

电网技术

CSTPCD北大核心
影响因子:2.821
ISSN:1000-3673
年,卷(期):2024.48(1)
  • 8
  • 14