首页|基于随机森林算法的异常发热复合绝缘子分类模型

基于随机森林算法的异常发热复合绝缘子分类模型

扫码查看
不同类型异常发热复合绝缘子对应的检修决策、应急处理手段各不相同,因此迫切需要建立复合绝缘子异常发热类型识别方法.该文分析了表面积污、护套老化受潮和芯棒酥朽发热复合绝缘子的表面中轴线温度曲线,并定义了 7个温度特征量对复合绝缘子异常发热状态进行表征.此外,该文提出了基于随机森林算法的异常发热复合绝缘子分类型模型,并使用现场和实验室拍摄的异常发热复合绝缘子红外图像构建温度特征量样本集.采用SMOTE算法对芯棒酥朽复合绝缘子温度特征量进行数据增广、10折交叉验证选择决策树个数.模型测试结果显示,表面积污、护套老化受潮和芯棒酥朽复合绝缘子的分类精确率均在85%以上.
Classification Model of Abnormal Heating Composite Insulator Based on Random Forest Algorithm
There are usually different correspondenct maintenance decisions and emergency treatments for various types of abnormal heating composite insulators.Therefore,it is urgent to establish a method for the identification of the abnormal heating composite insulators.In this paper,the surface axis temperature curves of the contaminated composite insulators,the composite insulators with aging and damp sheath and the decay-like composite insulators are analyzed,and seven temperature characteristic quantities are defined to characterize the abnormal heating states of the composite insulators.Then,a classification model of the abnormal heating composite insulators based on the random forest algorithm is proposed,and a sample set of the temperature feature quantities is constructed by using the infrared spectra of the abnormal heating composite insulators taken in the field and the laboratory.The SMOTE algorithm is used to perform the data augmentation and the 10-fold cross-validation on the temperature features of the decay-like composite insulator to select the number of the decision trees.The model test results show that the classification precision of the contaminated composite insulators,the composite insulators with aging and damp sheath and the decay-like composite insulators reaches 96%,93%and 94%,respectively.

abnormal heatingcomposite insulatorrandom forestdecay-like rod

胡琴、刘黎、徐兴、李特

展开 >

雪峰山能源装备安全国家野外科学观测研究站(重庆大学),重庆市沙坪坝区 400044

国网浙江省电力有限公司电力科学研究院,浙江省杭州市 310014

异常发热 复合绝缘子 随机森林 芯棒酥朽

国网浙江省电力有限公司科技项目

5211DS20008P

2024

电网技术
国家电网公司

电网技术

CSTPCD北大核心
影响因子:2.821
ISSN:1000-3673
年,卷(期):2024.48(1)
  • 16