首页|基于临界超标样本扩充的数据驱动短路电流超标精准校验方法

基于临界超标样本扩充的数据驱动短路电流超标精准校验方法

扫码查看
短路电流超标校验中,针对现有技术在临界超标场景下存在计算精度不足、易误判的缺陷,提出一种基于临界超标样本扩充的数据驱动短路电流超标精准校验方法.首先,在短路电流领域首次采用生成对抗网络(generative adversarial networks,GAN)产生与蒙特卡洛模拟具有相同效力的大量样本,再筛选其中的临界超标样本;其次,设计了一种临界超标占比高、非临界超标占比低的新型样本构成方式,据此融合GAN生成临界超标样本与蒙特卡洛仿真样本以形成数据驱动样本集;继而,采用数据驱动的代表性回归算法LightGBM开展短路电流超标校验;最后,仿真结果表明所提方法能有效提高短路电流超标的校验准确度,相比其他物理计算方法和数据驱动方法具有更高效率和计算精度,以及更快的计算速度.
Data-driven Accurate Verification Method for Short-circuit Current Over-limited Based on Critical Over-limited Samples Expansion
In the verification of short-circuit current over-limited,aiming at the weaknesses of insufficient accuracy and easy to misjudge in existing methods in critical over-limited scenarios,this paper proposes a data-driven accurate verification method for short-circuit current over-limited based on critical over-limited samples expansion.Firstly,the Generative Adversarial Networks(GAN)is adopted in the short-circuit current field for the first time to generate many samples with the same effects as the Monte Carlo simulation.Then,the critical over-limited samples are filtered.Secondly,a new method of sample composition is designed,which has the characteristic of a high proportion of critical over-limited and a low proportion of non-critical over-limited.Based on this,the data-driven sample set is formed by blending GAN critical over-limited and Monte Carlo simulation samples.Then,LightGBM,the representative regression algorithm in data-driven methods,is used to verify short-circuit current over-limitations.Finally,the simulation results show that the proposed method can effectively improve the verification accuracy of short-circuit current over-limitations.Compared to other physical computing and data-driven methods,it has higher efficiency,computational accuracy,and faster calculation speed.

short-circuit current over-limited verificationcritical over-limited samples expansionGANdata-drivenLightGBM

黄梓欣、汪涛、徐昂、吴宇奇、林湘宁、魏繁荣、李正天

展开 >

强电磁工程与新技术国家重点实验室(华中科技大学),湖北省武汉市 430074

短路电流超标校验 临界超标样本扩充 生成对抗网络 数据驱动 LightGBM

国家自然科学基金

U22B20106

2024

电网技术
国家电网公司

电网技术

CSTPCD北大核心
影响因子:2.821
ISSN:1000-3673
年,卷(期):2024.48(6)
  • 14