首页|基于多尺度分量特征学习的用户级超短期负荷预测

基于多尺度分量特征学习的用户级超短期负荷预测

扫码查看
针对用户级负荷波动性强,一步分解后数据维度增加导致运行效率降低以及精度提升有限等问题,该文提出一种新的多尺度分量特征学习框架,用于用户级超短期负荷预测.构建基于自适应噪声的完整经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)以及变分模态分解(variational mode decomposition,VMD)的自适应二次模态分解框架,捕捉周期性等时序特征,并降低其非平稳特性;采用多维特征融合的方式挖掘各本征模态函数之间的耦合关系,丰富特征信息;利用改进的多尺度空间注意力(multiscale spatial attention,MSA)模块沿时间、空间以及通道等多尺度提取时空特征及多分量间耦合关系,进而便于卷积神经网络(convolutional neural network,CNN)学习多分量特征.基于江苏省南京市房地产业、教育业以及商务服务业共12位用户的实际负荷数据进行算例分析,各行业平均绝对百分误差分别为5.82%、4.54%以及8.78%,与效果最好的对照模型相比,分别降低了 10.46%、6%以及7.48%,验证了该文模型具有较高的预测精度和良好的泛化性能.
User Level Ultra-short-term Load Forecasting Based on Multi-scale Component Feature Learning
Considering the high volatility of user-level load and low operation efficiency or limited accuracy improvement caused by increased data dimension after one-step decomposition,a novel multi-scale component feature learning framework is proposed for forecasting user-level load.An adaptive quadratic modal decomposition framework based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),permutation entropy(PE),and variational mode decomposition(VMD)is constructed to capture temporal features such as periodicity and reduce their non-stationary characteristics.The multi-dimensional feature fusion method explores the coupling relationship among intrinsic mode functions and enriches the feature information.The improved multiscale spatial attention(MSA)module extracts spatiotemporal features and multi-component coupling relations along multiple scales such as time,space,and channel,thus facilitating the convolutional neural network(CNN)to learn multi-component features.Based on the actual load data of 12 users in the real estate industry,education industry,and business service industry in Nanjing,Jiangsu Province,the average absolute percentage error is 5.82%,4.54%,and 8.78%,respectively,which is reduced by 10.46%,6%and 7.48%compared with the best comparison model.It is verified that the proposed model has high prediction accuracy and good generalization performance.

load forecastingCNNadaptive quadratic modal decompositionMSA

臧海祥、陈玉伟、程礼临、朱克东、张越、孙国强、卫志农

展开 >

河海大学电气与动力工程学院,江苏省 南京市 211100

中国电力科学研究院有限公司(南京),江苏省 南京市 210003

负荷预测 卷积神经网络 自适应二次模态分解 多尺度空间注意力机制

国家自然科学基金青年基金江苏省自然科学基金青年基金

52107131BK20210045

2024

电网技术
国家电网公司

电网技术

CSTPCD北大核心
影响因子:2.821
ISSN:1000-3673
年,卷(期):2024.48(6)
  • 14