Magnesium-lon Conducting EIectrolyte Based on Grignard Reaction: Synthesis and Properties
With the strategic implementation of carbon peaking and carbon neutrality, the demand for advanced energy storage technology is rapidly increasing. Among these, the electrochemical energy storage technologies have been evolving rapidly, and have attracted intensive attention from academia and industrial sectors. In comparison with lithium-ion batteries, magnesium batteries have emerged as an important direction for developing next-generation rechargeable batteries, in view of their higher energy densities, lower cost, higher natural abundance, and environmental friendliness. For classic non-aqueous electrolytes, the formation of the passivation films with low ionic conductivities on magnesium anodes significantly hinders the electrochemical dissolution/deposition of magnesium ions, thereby greatly limiting the development of magnesium batteries. Therefore, the exploration of high-performing magnesium-ion conductive electrolyte systems is a key direction in improving the performance of magnesium batteries. In this work, from the perspective of the classical organic chemistry experiment of "Grignard reaction", we concentrate on the preparation of magnesium-ion conductive non-aqueous electrolytes and their application in magnesium battery systems. We combine the fundamentals of organic chemistry with cutting-edge technology in electrochemical energy storage, thus helping students to expand their scientific horizons, stimulating their research interests and improving their awareness of energy security and scientific literacy.
Electrochemical energy storageMagnesium batteryLiquid electrolyteGrignard reaction