首页|基于生成式投影插值的双域CBCT稀疏角度重建方法

基于生成式投影插值的双域CBCT稀疏角度重建方法

扫码查看
目的 为了解决稀疏角度CBCT重建的图像伪影问题,本文提出了一种基于生成式投影插值的双域CBCT重建框架(DualSFR-Net)。方法 提出的DualSFR-Net方法主要包含3个模块:生成式投影插值模块、域转换模块和图像恢复模块。生成式投影插值模块包括一个基于生成对抗网络的稀疏投影插值网络(SPINet)和一个全角度投影恢复网络(FPRNet)。其中,SPINet针对稀疏角度投影数据进行投影插值合成全角度投影数据,FPRNet则是对合成全角度投影数据进一步修复。域转换模块引入重建和前投影算子实现双域网络的前向和梯度回传过程。图像恢复模块包含一个图像恢复网络FIRNet,对域转换后的图像进行微调以去除残留的伪影和噪声。结果 在牙科CT数据集上进行的验证实验结果显示,本研究提出的DualSFR-Net在稀疏采样协议下能够重建出高质量的CBCT图像;定量上,所提出DualSFR-Net方法在稀疏2倍和4倍协议下在PSNR指标上相对于现有同类最优方法分别提高了0。6615和0。7658,在SSIM指标上分别提高了0。0053和0。0134。结论 本研究提出的基于生成式投影插值的双域CBCT稀疏角度重建方法DualSFR-Net能够有效地去除条纹伪影,改善图像质量,成功实现了对CBCT稀疏角度双域成像网络的高效联合训练。
A dual-domain cone beam computed tomography sparse-view reconstruction method based on generative projection interpolation
Objective To propose a dual-domain CBCT reconstruction framework(DualSFR-Net)based on generative projection interpolation to reduce artifacts in sparse-view cone beam computed tomography(CBCT)reconstruction.Methods The proposed method DualSFR-Net consists of a generative projection interpolation module,a domain transformation module,and an image restoration module.The generative projection interpolation module includes a sparse projection interpolation network(SPINet)based on a generative adversarial network and a full-view projection restoration network(FPRNet).SPINet performs projection interpolation to synthesize full-view projection data from the sparse-view projection data,while FPRNet further restores the synthesized full-view projection data.The domain transformation module introduces the FDK reconstruction and forward projection operators to complete the forward and gradient backpropagation processes.The image restoration module includes an image restoration network FIRNet that fine-tunes the domain-transformed images to eliminate residual artifacts and noise.Results Validation experiments conducted on a dental CT dataset demonstrated that DualSFR-Net was capable to reconstruct high-quality CBCT images under sparse-view sampling protocols.Quantitatively,compared to the current best methods,the DualSFR-Net method improved the PSNR by 0.6615 and 0.7658 and increased the SSIM by 0.0053 and 0.0134 under 2-fold and 4-fold sparse protocols,respectively.Conclusion The proposed generative projection interpolation-based dual-domain CBCT sparse-view reconstruction method can effectively reduce stripe artifacts to improve image quality and enables efficient joint training for dual-domain imaging networks in sparse-view CBCT reconstruction.

cone beam computed tomographysparse-view scan technologydual-domain network

廖静怡、彭声旺、王永波、边兆英

展开 >

南方医科大学生物医学工程学院,广东 广州 510515

琶洲实验室(黄埔),广东 广州 510700

CBCT 稀疏角度成像 双域网络

国家自然科学基金广州市科技计划项目

62201247202206010148

2024

南方医科大学学报
南方医科大学

南方医科大学学报

CSTPCD北大核心
影响因子:1.654
ISSN:1673-4254
年,卷(期):2024.44(10)