首页|基于离散小波变换的卷积自编码运动想象脑电信号的分类

基于离散小波变换的卷积自编码运动想象脑电信号的分类

Classification of convolutional autoencoder motor imagery EEG signals based on discrete wavelet transform

扫码查看
左右手运动想象脑电信号(MI-EEG)分类准确率低,制约了相关脑-机接口技术的发展.实验采集了 16名健康受试者的运动想象脑电信号,提出了一种基于离散小波变换(DWT)和卷积自编码(CAE)的运动想象脑电信号分类算法.利用离散小波变换将EEG转换成时频矩阵,输入到卷积自编码网络中进行脑电信号的特征分类.该算法在实验数据集和公开数据集上测试都得到了较好的分类结果,静息-想象左手、静息-想象右手、想象左手-想象右手3组EEG在实验数据集上分类准确率分别为97.36%、97.27%、86.82%,在公开数据集上分类准确率分别为99.30%、98.23%、92.67%.离散小波变换结合卷积自编码网络模型在左右手运动想象脑电信号分类应用中比其他深度学习方法(CNN、LSTM、STFT-CNN)性能更优.
The low classification accuracy of motor imagery EEG signals(MI-EEG)of the left and right hands limits the development of related brain-computer interface technology.The motor imagery EEG signals of 16 healthy subjects were collected experimentally.A discrete wavelet transform(DWT)and convolutional autoencoder(CAE)based classification algorithm for motor imagery EEG signals were proposed.The EEG signal is converted into a time-frequency matrix using a discrete wavelet transform and input to a convolutional autoencoder network for the feature classification of EEG signals.The algorithm obtained better classification results when tested on both the experimental dataset and the public dataset.The accuracy of the three classification groups of rest-imagine left hand,rest-imagine righthand,and imagine left hand-imagine right hand was 97.36%,97.27%,and 86.82%on the experimental dataset,and 99.30%,98.23%,and 92.67%on the public dataset.The discrete wavelet transform combined with the convolutional autoencoder network model outperforms other deep learning methods(CNN,LSTM,STFT-CNN)in classification applications of motor imagery EEG signals of left and right hand.

motor imagerydiscrete wavelet transformconvolutional autoencoderdeep learning

郭玉雪、于洪丽、么航、杜博爱、王春方

展开 >

河北工业大学生命科学与健康工程学院 天津 300130

河北工业大学河北省生物电磁与神经工程重点实验室 天津 300130

天津市人民医院康复医学科 天津 300121

运动想象 离散小波变换 卷积自编码 深度学习

国家自然科学基金国家自然科学基金

5187706882102652

2023

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2023.46(19)
  • 6