首页|融合注意力机制与GhostUNet的路面裂缝检测方法

融合注意力机制与GhostUNet的路面裂缝检测方法

扫码查看
路面裂缝是道路最为常见的缺陷,随着深度学习技术的发展,利用深度学习的方法对路面图像中的裂缝信息提取的方法愈来愈多.针对现有深度学习路面裂缝检测方法提取裂缝特征不完整导致精度低以及实时性不足的问题,提出一种融合注意力机制与GhostUNet的路面裂缝检测方法.本方法由编码器和解码器组成,将U-Net中的常规卷积改进为Ghost卷积,减少模型参数量;在编码和解码部分,为了提高对裂缝特征的提取能力,引入ECA注意力机制和残差连接,ECA注意力模块可以过滤不相关的特征信息,利用残差连接可以避免网络退化现象.为评估本方法在裂缝检测方面的有效性,使用两个公开裂缝数据集,并进行消融实验和对比实验,实验结果F1_score、P和R分别比U-Net平均提高了14.48%、14.35%和14.45%;该模型相比U-Net参数量下降了14.2 MB.该模型与同类模型比较,分割的准确率更高,参数量更少.
Combining attention mechanism with GhostUNet method for pavement crack detection
Pavement crack is the most common defect of road.With the development of deep learning technology,more and more methods are used to extract the crack information from pavement images.Aiming at the problems of low accuracy and lack of real-time due to incomplete extraction of crack features by existing deep learning pavement crack detection methods,a road crack detection method combining attention mechanism and GhostUNet is proposed.This method is composed of encoder and decoder.The conventional convolution in U-Net is improved to Ghost convolution and the number of model parameters is reduced.In coding and decoding,in order to improve the ability to extract crack features,ECA attention mechanism and residual connection are introduced.ECA attention module can filter irrelevant feature information,and residual connection can be used to avoid network degradation.To evaluate the effectiveness of this method in fracture detection,two publicly available fracture data sets were used,and ablation and comparison experiments were conducted.The experimental results of F1_score,P and R increased by 14.48%,14.35%and 14.45%,respectively,compared with U-Net.The number of parameters in this model decreased by 14.2 MB compared with U-Net.Compared with similar models,this model has higher segmentation accuracy and fewer parameters.

crack detectionGhostU-NetECAresidual connection

赵志宏、郝子晔、何朋

展开 >

石家庄铁道大学信息科学与技术学院 石家庄 050043

石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043

裂缝检测 Ghost U-Net ECA 残差连接

国家自然科学基金

11972236

2023

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2023.46(24)
  • 13