首页|基于改进DBO优化BiLSTM的IGBT老化预测模型

基于改进DBO优化BiLSTM的IGBT老化预测模型

扫码查看
为了表征逆变器故障中IGBT模块的老化趋势,提高老化过程的预测精度,本文提出一种基于改进蜣螂搜索算法(IDBO)优化双向长短期神经网络(BiLSTM)超参数的IGBT老化预测模型.首先提取老化过程中Vce.on的时频域特征,利用核主成分分析进行降维构建归一化综合指标.其次,针对蜣螂搜索算法(DBO)的不足,通过引入改进Circle混沌映射、Levy飞行和自适应权重因子提升了DBO寻优能力和收敛性能,利用IDBO对BiLSTM预测模型超参数实现全局寻优.最后,通过实际IGBT退化数据验证了基于IDBO优化BiLSTM老化预测模型的有效性和优越性.结果表明,所构建的IDBO-BiLSTM 模型与 BiLSTM 模型相比 RMSE平均下降36.42%、MAE平均下降31.77%、MAPE平均下降41.03%.
IGBT aging prediction model based on improved DBO optimization BiLSTM
In order to characterize the aging trend of IGBT modules in inverter faults and improve the prediction accuracy of the aging process,this paper proposes an IGBT aging prediction model based on improved dung beetle optimizer(IDBO)optimizing the hyper-parameters of bidirectional long-short-term neural network(BiLSTM).Firstly,the time-frequency domain features of Vce.on in the aging process are extracted,and the normalized composite index is constructed by dimensionality reduction using kernel principal component analysis.Secondly,to address the shortcomings of the dung beetle optimizer(DBO),the optimization ability and convergence performance of the DBO are improved by introducing the improved Circle chaotic mapping,Levy flight,and adaptive weighting factors,and the global optimization is achieved by using the IDBO for the hyperparameters of the BiLSTM prediction model.Finally,the effectiveness and superiority of the BiLSTM aging prediction model optimized based on IDBO are verified by actual IGBT degradation data.The results show that the constructed IDBO-BiLSTM model reduces RMSE by 36.42%,MAE by 31.77%,and MAPE by 41.03%on average compared with the BiLSTM model.

dung beetle optimizerBiLSTM neural networkLevy flight strategyIGBTaging prediction

韩素敏、赵国帅、尚志豪、余悦伟、郭宇

展开 >

河南理工大学电气工程与自动化学院 焦作 454003

河南省煤矿装备智能检测与控制重点实验室 焦作 454003

蜣螂搜索算法 BiLSTM神经网络 Levy飞行策略 IGBT 老化预测

河南省科技攻关项目国家重点研发计划专项河南理工大学博士基金

2021022100942016YFC0600906B2021-23

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(1)
  • 24