首页|面向特征选择任务的改进蜣螂优化算法

面向特征选择任务的改进蜣螂优化算法

扫码查看
蜣螂优化算法是一种基于蜣螂不同行为模式的新型启发式算法,与其他算法相比的收敛速度更快,逃脱局部最优的能力更强.针对蜣螂优化算法不能进行特征选择的问题,在蜣螂优化算法的基础上提出了蜣螂灰狼融合算法.该算法基于3种改进策略:精英初始化种群策略、灰狼蜣螂融合策略、运行加速策略,进一步提高蜣螂优化算法在特征选择任务上的性能,并给出了算法整体的伪代码.实验结果表明,比较其他改进型启发式算法,蜣螂灰狼融合优化算法在12个分类数据集中能够得到更高精度、更低维度的特征子集,同时兼备收敛速度、运行速度更快的优点.
Improved dung beetle optimization for feature selection tasks
The dung beetle optimization(DBO)algorithm is a novel heuristic algorithm inspired by the behaviors of dung beetles.It exhibits faster convergence speed and stronger ability to escape local optima compared to other algorithms.However,the DBO algorithm lacks the capability of performing feature selection.In this paper,propose algorithm of dung beetle and grey wolf fusion(DBOG)as an improvement to the DBO algorithm specifically designed for feature selection tasks.The DBOG incorporates three enhancement strategies:elite initialization population strategy,grey wolf-dung beetle fusion strategy,and runtime acceleration strategy.These strategies aim to further enhance the performance of the DBO algorithm in feature selection tasks.Additionally,we provide pseudocode for the overall algorithm.Experimental results demonstrate that,compared to other improved heuristic algorithms,the DBOG achieves higher accuracy and lower-dimensional feature subsets across 12 classification datasets.Moreover,it offers advantages such as faster convergence speed and computational efficiency.

feature selectiondung beetle optimizerclassification

李珺、徐秦

展开 >

东北林业大学计算机与控制工程学院 哈尔滨 150000

特征选择 蜣螂优化算法 分类

国家自然科学基金面上项目

52071074

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(1)
  • 26