首页|基于多模态轻量化混合模型的情绪识别

基于多模态轻量化混合模型的情绪识别

Emotion recognition based on multi-modal lightweight hybrid model

扫码查看
实现更加准确的情绪识别是当前面临的一项富含挑战性且十分有意义的任务.由于情绪的复杂多样性,单一模态的脑电信号难以对情绪进行全面客观的度量.因此本文提出一种多模态轻量化混合模型 PCA-MWReliefF-GAPSO-SVM,该混合模型由PCA-MWReliefF特征通道选择器和GAPSO-SVM分类器构成.选用脑电信号(EEG)、肌电信号(EMG)、体温信号(TEM)三模态信号进行情绪识别.在 DEAP 公共数据集上进行多次实验验证,在效价维度、唤醒维度和四分类中分别取得了 97.500 0%、95.833 3%、95.833 3%的分类准确率.实验结果表明,提出的混合模型有助于提高情绪识别准确率且明显优于单模态情绪识别.与近期的类似工作相比,本文提出的混合模型具有较高准确率、计算量小且通道数少的优点,更易于实际应用.
It is a challenging and meaningful task to achieve more accurate emotion recognition.Because of the complex diversity of emotions,it is difficult to measure emotions comprehensively and objectively with a single mode of EEG signal.Therefore,a multi-modal lightweight hybrid model PCA-MWReliefF-GAPSO-SVM is proposed in this paper.The hybrid model consists of a PCA-MWReliefF feature channel selector and a GAPSO-SVM classifier.Electroencephalogram(EEG),electromyographic signal(EMG)and temperature signal(TEM)were used for emotion recognition.Through many experiments on DEAP public data set,the classification accuracy of 97.500 0%,95.833 3%and 95.833 3%in titer dimension,wake dimension and four categories were obtained,respectively.The experimental results show that the proposed mixed model can improve the emotion recognition accuracy and is significantly better than the single mode emotion recognition.Compared with the recent similar work,the hybrid model proposed in this paper has the advantages of higher accuracy,less computation and fewer channels,and is easier to be applied in practice.

emotion recognitionmultimode signal fusionEEGEMGTEMsupport vector machine

彭军强、张立坤、杨亚楠

展开 >

天津工业大学机械工程学院 天津 300387

天津工业大学电子与信息工程学院 天津 300387

情绪识别 多模态信号融合 EEG EMG TEM 支持向量机

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(3)
  • 41