首页|改进ORB提取匹配算法的SLAM应用研究

改进ORB提取匹配算法的SLAM应用研究

扫码查看
由于传统的 ORB特征点提取匹配方法在图像纹理信息不丰富或者光照变化剧烈时极易产生特征点丢失、分布不均等问题,不利于 SLAM系统的定位与建图.为此本文提出了一套较为鲁棒、精度较高的提取匹配算法.首先基于 ORB特征点对其提取算法进行改进,计算自适应阈值并基于网格模型提取特征点,可提高特征点提取的鲁棒性并使其分布均匀.此外还提出了 G-R图像匹配算法,基于网格特征计算邻域支持估计量来区分正误匹配点,再结合引入评价函数的 RANSAC算法进一步剔除误匹配点,相比 ORB-SLAM2 原始匹配算法提高匹配精度 9.36%,并减少时间消耗约 13.6%.最后将本文提出的特征点提取匹配算法加入到 ORB-SLAM2 算法框架,经数据集与实际场景验证本文方法能有效提高 ORB-SLAM2 系统定位精度 36.6%以上,使系统更具鲁棒性.
Research on SLAM application with improved ORB extraction and matching algorithms
As the traditional ORB feature point extraction and matching method is not rich in image texture information or when the lighting changes drastically,it is very easy to produce feature point loss,uneven distribution and other problems,which is not conducive to the location and construction of the SLAM system.In this paper,a set of more robust and higher accuracy extraction matching algorithm is proposed.Firstly,the extraction algorithm is improved based on the ORB feature points,the adaptive threshold is calculated and the feature points are extracted based on the grid model,which can improve the robustness of feature point extraction and make its distribution uniform.In addition,the G-R image matching algorithm is also proposed,which calculates the neighborhood support estimator based on grid features to distinguish between positive and incorrect matches,and then combines with the RANSAC algorithm that introduces the evaluation function to further eliminate incorrect matches,which improves the matching accuracy by 9.36%compared with the original matching algorithm of ORB-SLAM2,and reduces the time consumption by about 13.6%.Finally,the feature point extraction matching algorithm proposed in this paper is added to the ORB-SLAM2 algorithm framework,which is verified by the dataset and the actual scene that the method in this paper can effectively improve the positioning accuracy of the ORB-SLAM2 system by more than 36.6%and make the system more robust.

digital image processingORB feature pointsvisual SLAMquadtreeGMS matching

张钧程、柯福阳、王旭

展开 >

南京信息工程大学自动化学院 南京 210044

南京信息工程大学软件学院 南京 210044

南京信息工程大学无锡研究院 无锡 214000

数字图像处理 ORB特征点 视觉 SLAM 四叉树 GMS匹配

江苏省重点研发计划江苏省研究生实践创新计划

BE2021622SJCX23_0395

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(3)
  • 20