首页|基于FPGA的道路标识检测系统设计

基于FPGA的道路标识检测系统设计

扫码查看
为达到道路标识实时检测的要求,针对目前主流的目标检测算法在图像处理器上存在模型参数量大、实时性差、功耗大和成本高的问题,提出一种基于FPGA的道路标识实时检测方案.为减少参数量、提高检测速度,采用YOLOv3-tiny作为特征提取网络,进行权重参数的训练与优化;将模型浮点数参数量化为8位定点数,并将量化后的网络模型在FPGA上完成部署实验.实验结果表明,在Yolov3-tiny网络检测速率上,本系统对实验数据集的测试帧率可达到153 fps,功耗为4.92 W,峰值GOP/s为115GOP/s.该系统可以满足实时目标检测的要求,并且能够在低功耗的状态下实现系统的部署.
Design of road marking detection system based on FPGA
In order to meet the requirements of real-time detection of road signs,for the current mainstream target detection algorithms on the image processor there are a large number of model parameters,poor real-time performance,high power consumption and high cost,a real-time detection of road signs based on FPGA is proposed.In order to reduce the number of parameters and improve the detection speed,YOLOv3-tiny is used as the feature extraction network for the training and optimization of the weight parameters;the model floating-point parameters are quantized into 8-bit fixed-point numbers,and the quantized network model is used to complete the deployment experiments on the FPGA.The experimental results show that at the Yolov3-tiny network detection rate,the test frame rate of this system for the experimental dataset can reach 153 fps,the power consumption is 4.92 W,and the peak GOP/s is 115GOP/s.This system can satisfy the requirement of real-time target detection,and it can realize the deployment of the system under low power consumption.

object detectionYOLOhardware accelerationFPGA

王新伟、丁红昌、曹国华

展开 >

长春理工大学机电工程学院 长春 130022

长春理工大学重庆研究院 重庆 401135

目标检测 YOLO 硬件加速 FPGA

173计划技术领域基金(B类)重庆市自然科学基金

2022-JCJQ-JJ-02572022NSCQ-MSX0340

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(4)
  • 13