首页|多向加权作用下的直觉模糊相似性最大化导向的阈值分割方法

多向加权作用下的直觉模糊相似性最大化导向的阈值分割方法

扫码查看
针对现有阈值分割方法中存在的分割精确性和分割适应性欠佳等问题,提出一种多向加权作用下的直觉模糊相似性最大化导向的阈值分割方法.该方法首先运用各向异性高斯一阶导卷积核对输入图像进行多方向卷积运算和多尺度乘积变换,得到四个方向下的具有单峰直方图模态的四幅参考图像;然后通过二值轮廓图像对四幅参考图像进行采样构建对应的直觉模糊集;最后运用多向加权策略,将不同方向的四个直觉模糊集融合以构建相似性目标函数,并以该目标函数取最大值时对应的灰度值作为分割阈值.提出的方法与5种新近的分割方法进行了全面比较,在8幅合成图像和88幅真实世界图像上的实验结果表明:提出的方法具有更高的分割精确性和更灵活的分割适应性,在合成图像和真实世界图像上的平均马修斯相关系数方面分别达到了 0.998和0.964,相较于分割精度第2的方法分别提高了 39.90%和 26.22%.
Image thresholding method guided by maximizing similarity of multi-directional weighted intuitionistic fuzzy
To deal with the issues of poor segmentation accuracy and adaptability in existing thresholding segmentation methods,an image thresholding method guided by maximizing similarity of multi-directional weighted intuitionistic fuzzy is proposed.First,the proposed method utilizes convolution kernels based on first-order derivative of anisotropic Gaussian to perform multi-directional convolution operation and multi-scale product transformation on an input image,which will output four reference images with unimodal histogram in four directions.Then,it constructs the corresponding intuitionistic fuzzy sets by sampling four reference images with a binary contour image.Finally,it utilizes a multi-directional weighting strategy to fuse four intuitionistic fuzzy sets to construct a similarity objective function,and selects the gray level corresponding to the maximum value of this objective function as the segmentation threshold.The proposed method is comprehensively compared with 5 recent segmentation methods,and the experimental results on 8 synthetic images and 88 real-world images show that the proposed method has higher segmentation accuracy and more flexible adaptability,and the average Matthews correlation coefficients are 0.998 and 0.964 for the synthetic images and real-world ones,which outperform the second-best method by 39.90%and 26.22%,respectively.

image thresholdingfirst-order derivative of anisotropic gaussianmulti-scale product transformationintuitionistic fuzzy setssimilarity between images

陈疏桐、邹耀斌

展开 >

水电工程智能视觉监测湖北省重点实验室(三峡大学) 宜昌 443002

三峡大学计算机与信息学院 宜昌 443002

阈值分割 各向异性高斯一阶导 多尺度乘积变换 直觉模糊集 图像间相似性

国家自然科学基金

61871258

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(4)
  • 6