首页|基于改进非洲秃鹫算法优化极限学习机的船舶运动预测

基于改进非洲秃鹫算法优化极限学习机的船舶运动预测

Ship motion prediction study based on IAVOA optimized extreme learning machine

扫码查看
针对船舶运动预测模型精度不高而造成预测结果误差大的问题,提出一种利用改进非洲秃鹫优化算法(IAVOA)优化模型参数的极限学习机(ELM)预测模型,对船舶运动状况进行预测.在初始化种群时引入Circle混沌映射,增加种群的多样性;加入自适应算子,调整两类秃鹫对其他秃鹫的指引作用,提升算法的收敛速度和解的质量.利用IAVOA优化的ELM模型对船模水池试验运动数据进行预测,并采用均方根误差和平均绝对误差评判该预测模型,与现有其他启发式算法优化ELM模型比较,所提出的IAVOA-ELM具有更优的预测精度和泛化能力.
Aiming at the problem that the ship motion prediction model does not have high accuracy and the error of prediction results is too large,an extreme learning machine (ELM) prediction model is proposed to optimize the model parameters using the improved African vultures optimization algorithm (IAVOA),and use the model to predict the ship motion conditions. machine (ELM) prediction model,and use the model to predict the ship's motion conditions. Circle chaotic mapping is introduced in the initialization of the population to increase the diversity of the population;adaptive operators are added to adjust the guiding role of two types of vultures to other vultures to improve the convergence speed and the quality of the algorithm. The IAVOA-optimized ELM model is used to predict the ship model pool test motion data,and the root-mean-square error and the mean absolute error are used to judge the prediction model. Comparing with other existing heuristic algorithms to optimize the ELM model,the proposed IAVOA-ELM has a better prediction accuracy and generalization ability.

extreme learning machineafrican vultures optimization algorithmCircle chaotic mappingadaptive tuning operatorship motion prediction

戚得众、吴云志、丁璐、丁坦

展开 >

湖北工业大学机械工程学院 武汉 430068

山东农业大学机械与电子工程学院 泰安 271018

武昌首义学院机电学院 武汉 430064

极限学习机 秃鹫优化算法 Circle混沌映射 自适应调整算子 船舶运动预测

国家重点研发计划湖北省教育厅科研计划项目

2018YFD0700604B2021358

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(5)
  • 8