首页|基于强化学习的多段连续体机器人轨迹规划

基于强化学习的多段连续体机器人轨迹规划

Trajectory planning of multi-stage continuum robot based on reinforcement learning

扫码查看
针对多段连续体机器人的轨迹规划问题,提出了一种基于深度确定性策略梯度强化学习的轨迹规划算法.首先,基于分段常曲率假设方法,建立连续体机器人的关节角速度和末端位姿的正向运动学模型.然后,采用强化学习算法,将机械臂的当前位姿和目标位姿等信息作为状态输入,将机械臂的关节角速度作为智能体的输出动作,设置合理的奖励函数,引导机器人从初始位姿向目标位姿移动.最后,在MATLAB中搭建仿真系统,仿真结果表明,强化学习算法成功对多段连续体机器人进行轨迹规划,控制连续体机器人的末端平稳运动到目标位姿.
For the trajectory planning of multi-stage continuum robots,a trajectory planning algorithm based on deep deterministic policy gradient reinforcement learning is proposed. Firstly,based on the piecewise constant curvature hypothesis,the forward velocity kinematic model of joint angular velocity and end pose of the continuum robot is established. Then,the reinforcement learning algorithm is used to take the current pose and target pose of the robot arm as state input,the joint angular velocity of the robot arm as the output action of the agent,and a reasonable reward function is set to guide the robot to move from the initial pose to the target pose. Finally,a simulation system is built in MATLAB,and the simulation results show that the reinforcement learning algorithm successfully performs trajectory planning for the multi-segment continuum robot and controls the end of the continuum robot to move smoothly to the target pose.

continuum robottrajectory planningreinforcement learningposition and pose controlreward guidance

刘宜成、杨迦凌、梁斌、陈章

展开 >

四川大学电气工程学院 成都 610065

清华大学自动化系 北京 100084

连续体机器人 轨迹规划 强化学习 位姿控制 奖励引导

清华大学横向协作项目

HG2020153

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(5)
  • 7