首页|基于精英差分变异的改进蜜獾算法

基于精英差分变异的改进蜜獾算法

扫码查看
针对标准蜜獾算法(HBA)易陷入局部最优、搜索精度低、收敛速度较慢等问题,提出基于精英差分变异的蜜獾算法(EDVHBA).将标准HBA中的两种寻优策略所搜寻到的精英解,进行组合差分变异以产生新的精英解,利用3个精英解协同指导种群下一轮迭代,可以增加算法解的多样性,防止算法陷入过早收敛;同时改进非线性密度因子和引入新的位置更新策略,提升算法的收敛速度和寻优精度.为验证算法的改进效果和性能,对8个经典测试函数进行仿真实验,实验结果表明:与其他群智能算法和改进的HBA相比,EDVHBA在单峰函数中都能搜寻到最优值0,在多峰函数中迭代50次左右就可以收敛到理想最优值,验证了EDVHBA具有更好的寻优性能.
Improved honey badger algorithm based on elite differential variation
Aiming at the problems that the standard honey badger algorithm (HBA) is easy to fall into local optimum,low search accuracy and slow convergence speed,a honey badger algorithm based on elite differential mutation (EDVHBA) is proposed. The elite solution searched by the two optimization strategies in the standard HBA is combined with differential mutation to generate a new elite solution. The use of three elite solutions to guide the next iteration of the population can increase the diversity of the algorithm solution and prevent the algorithm from falling into premature convergence. At the same time,the nonlinear density factor is improved and a new position update strategy is introduced to improve the convergence speed and optimization accuracy of the algorithm. In order to verify the performance of the algorithm,simulation experiments are carried out on eight classical test functions. The results show that compared with other swarm intelligence algorithms and improved HBA,EDVHBA can find the optimal value 0 in the unimodal function,and converge to the ideal optimal value in the multimodal function after about 50 iterations,which verifies that EDVHBA has better optimization performance.

honey badger algorithmnonlinear density factorelite differential variationescape predator strategy

周建新、张力洪、孙腾浩

展开 >

华北理工大学电气工程学院 唐山 063210

蜜獾算法 非线性密度因子 精英差分变异 逃离捕食者策略

河北省自然科学基金

F2018209201

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(6)
  • 6