首页|基于弱光增强与YOLO算法的锯链缺陷检测方法

基于弱光增强与YOLO算法的锯链缺陷检测方法

扫码查看
在基于机器视觉的锯链缺陷实时检测过程中,油污、粉尘等因素影响图像亮度和质量,导致目标检测网络的特征提取能力下降.为保证复杂环境下锯链缺陷检测的准确率,本文设计了一种结合弱光增强和YOLOv3算法的锯链自动化缺陷检测方法.首先使用RRDNet网络自适应增强锯链图像亮度,恢复图像暗区的细节特征;然后采用改进YOLOv3算法对锯链零件进行缺陷检测,增加FPN结构特征输出图层,利用K-means聚类算法对先验框参数重新聚类,并引入GIoU损失函数来提高小目标的缺陷检测精度.最后搭建一套锯链缺陷在线检测系统,对所提方法进行验证.实验结果表明,该方法能够显著提高弱光环境下的锯链图像照度、恢复图像细节,改进YOLOv3算法的mAP值为92.88%,相比原始YOLOv3提高14%,最终系统整体的漏检率降低到3.2%,过检率也降低到9.1%.所提出的方法可实现弱光场景下锯链缺陷的在线检测,并且对多种缺陷有着较高的检测精度.
Saw chain defect detection system based on low-light enhancement and YOLO algorithm
In real-time detection of saw chain defects based on machine vision,factors like oil contamination and dust impact image brightness and quality,leading to a decrease in the feature extraction capability of the object detection network. In this paper,an automated saw chain defect detection method that combines low-light enhancement and the YOLOv3 algorithm is proposed to ensure the accuracy of saw chain defect detection in complex environments. In the system,the RRDNet network is used to adaptively enhance the brightness of the saw chain image and restore the detailed features in the dark areas of the image. The improved YOLOv3 algorithm is used for defect detection. FPN structure is added with a feature output layer,the a priori bounding box parameters are re-clustered using the K-means clustering algorithm,and the GIoU loss function is introduced to improve the object defect detection accuracy. Experimental results demonstrate that this approach significantly improve image illumination and recover image details. The mAP value of the improved YOLOv3 algorithm is 92.88%,which is a 14% improvement over the original YOLOv3. The overall leakage rate of the system eventually reduces to 3.2%,and the over-detection rate also reduces to 9.1%. The method proposed in this paper enables online detection of saw chain defects in low-light scenarios and exhibits high detection accuracy for various defects.

saw chainlow light enhancementYOLOv3defect detection

张福豹、吴婷、赵春峰、魏贤良、刘苏苏

展开 >

南通大学机械工程学院 南通 226019

硕与硕(江苏)智能科技有限公司 南通 226499

锯链 弱光增强 YOLOv3 缺陷检测

南通市基础科学研究项目国防科工委项目

JC120220236142606211108

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(6)
  • 7