首页|基于EEMD能量熵和GJO-KELM的滚动轴承故障诊断

基于EEMD能量熵和GJO-KELM的滚动轴承故障诊断

扫码查看
滚动轴承在旋转机械中发挥着重要作用,若出现故障,轻则引起设备停机,重则危及现场人员生命安全,因此有必要对其进行故障诊断.针对滚动轴承故障特征难以提取,传统分类方法正确率不高的问题,本文提出一种基于集合经验模态分解(EEMD)能量熵和金豺优化算法(GJO)优化核极限学习机(KELM)的故障诊断方法,实现了提取滚动轴承故障特征并正确分类的目标.通过实验数据进行验证,该方法能够提取到滚动轴承原始信号中隐含的故障信息特征,其诊断正确率高达98.47%.
Fault diagnosis of rolling bearings based on EEMD energy entropy and GJO-KELM
Rolling bearings play an important role in rotating machinery. If a fault occurs,it can cause equipment shutdown,and in severe cases,endanger the safety of on-site personnel. Therefore,it is necessary to diagnose the fault. In response to the difficulty in extracting fault features of rolling bearings and the low accuracy of traditional classification methods,this paper proposes a fault diagnosis method based on Set Empirical Mode Decomposition (EEMD) energy entropy and Golden Jackal Optimization Algorithm (GJO) optimized Kernel Extreme Learning Machine (KELM),achieving the goal of extracting fault features of rolling bearings and correctly classifying them. Through experimental data validation,this method can extract the fault information features hidden in the original signal of rolling bearings,with a diagnostic accuracy of up to 98.47%.

EEMDenergy entropygolden jackal optimization algorithmkernel extreme learning machinefault diagnosis

史书杰、赵凤强、王波、杨晨昊、周帅

展开 >

大连民族大学机电工程学院 大连 116650

EEMD 能量熵 金豺优化算法 核极限学习机 故障诊断

国家自然科学基金

51875085

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(6)
  • 12