首页|基于多层次通道注意力网络的少样本字体生成

基于多层次通道注意力网络的少样本字体生成

扫码查看
为提升字体生成的图像质量,减少字体设计的人工成本,提出基于多层次通道注意力网络的少样本字体生成的方法.首先,该方法通过风格感知注意力模块获取重要的局部特征;然后设计了一个多层次的注意力机制,较浅的层只能观察图像的局部特征,而较深的层可以观察到图像的全部特征,通过聚合不同层次的局部特征来构建新的风格特征.最后,使用了内容损失函数、风格损失函数和L1损失函数优化模型的参数,稳定网络的训练,使生成图像在内容和风格上与目标字体保持一致.实验结果表明,该方法在未知样式的字体和未知内容的字体具有很强的泛化性.相比于其他方法,所提出的方法表现出更好的实验结果,能保持内容结构的完整和字形风格的准确性.
Few-shot font generation for multilevel channel attention networks
In order to improve the image quality of font generation and reduce the labour cost of font design,a method for few-shot font generation based on multilevel channel attention network is proposed. Firstly,the method acquires important local features through the style-aware attention module;then a multilevel attention mechanism is designed,where shallower layers can only observe the local features of the image,while deeper layers can observe all the features of the image,and new stylistic features are constructed by aggregating the local features of different levels. Finally,a content loss function,a style loss function and a L1 loss function are used to optimise the parameters of the model and stabilise the training of the network so that the generated images are consistent with the target font in terms of content and style. The experimental results show that the method has a strong generalisation to fonts of unknown style and fonts of unknown content. Compared to other methods,the proposed method shows better experimental results that maintain the integrity of the content structure and the accuracy of the font style.

font generationgenerative adversarial netsstyle transfer

邱燕波、储开斌、张继、冯成涛

展开 >

常州大学微电子与控制工程学院 常州 213159

常州大学计算机科学与人工智能学院 常州 213159

字体生成 生成对抗网络 风格迁移

江苏省基金项目江苏省高等学校自然科学研究面上项目江苏省研究生科研与实践创新计划项目江苏省研究生科研与实践创新计划项目

2019JSJG24319KJB510017KYCX23_3182YPC23020168

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(6)
  • 5