首页|基于树莓派4B的无人机动态追踪平台设计

基于树莓派4B的无人机动态追踪平台设计

扫码查看
针对无人机领域中的监管问题,基于YOLOv5-Lite的改进模型,提出了一种随着训练过程为模型动态地分配损失权重的指数移动样本加权函数.通过模型运算,控制二自由度云台对无人机实时跟踪,且视频采集、模型计算和二轴云台控制均在树莓派4B本地进行.优化过的模型在保持原模型参数量的同时,在mAP@.5:.95指标中达到了70.2%,相较于原模型提高了1.5%.在树莓派上的实时推理平均速度为2.1 FPS,处理效率更高.树莓派在模型推理的同时,通过I2C协议控制舵机平台对无人机目标进行追踪,保持对无人机的实时动态监测,提高了系统的可靠性,具有更好的实用价值.
Design of dynamic tracking platform for unmanned aerial vehicle based on Raspberry Pi 4B
Facing the challenges of regulating unmanned aerial vehicles (UAV),and based on an YOLOv5-Lite improved model,this paper incorporates an exponential moving sample weight function that dynamically allocates loss function weights to the model during the training iteration. Through model computations,we achieve real-time UAV tracking using a two-degree-of-freedom servo platform. Furthermore,video capture,model calculations,and servo control are all performed locally on a Raspberry Pi 4B.The optimized model maintains the original model's parameter count while achieving a mAP@.5:.95 score of 70.2%,representing a 1.5% improvement over the baseline model. Real-time inference on the Raspberry Pi yields an average speed of 2.1 frames per second (FPS),demonstrating increased processing efficiency. Simultaneously,the Raspberry Pi controls a servo platform via the I2C protocol to track UAV targets,ensuring real-time dynamic monitoring of UAVs. This optimization enhances system reliability and offers superior practical value.

UAVtrackingRaspberry PiYOLOv5-Litetarget detection

陈浩安、李晖、黄瑞、符平博、张见

展开 >

南京信息工程大学电子与信息工程学院 南京 210044

中国航空研究院研究生院 扬州 225006

无人机 追踪 树莓派 YOLOv5-Lite 目标检测

国家自然科学基金

61661018

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(6)
  • 5