首页|基于改进YOLOv8n的轻量化茶叶嫩芽检测方法

基于改进YOLOv8n的轻量化茶叶嫩芽检测方法

扫码查看
为解决自然环境下茶叶嫩芽检测场景复杂,模型参数量大无法在嵌入式设备部署等问题,提出一种基于改进YOLOv8n的轻量化茶叶嫩芽检测方法.构建一种MFBNet轻量化骨干网络,引入MBConv模块后大大减少了模型计算量.同时在骨干网中加入CBAM注意力模块,抑制无效信息,提高了模型检测精度;其次引入AKConv模块对VoVGSCSPC结构进行改进,提出全新的AVCStem模块,并将其替换颈部网络的C2f模块,进一步减少模型参数,提升嵌入式设备部署效率;最后采用GSConv模块替换颈部网络结构中的全部Conv模块,帮助模型进行快速计算,提高茶叶嫩芽的检测速率.结果表明,本文提出的模型比YOLOv8n原模型的mAP50和FPS分别提升了 3.5%、55.6%,参数量减少了 14.3%,且模型鲁棒性强,满足复杂场景下茶叶嫩芽的轻量化快速检测.
Research on lightweight tea sprout detection method based on improved YOLOv8n
To solve the problems of complex tea bud detection scenarios in natural environments and the large number of model parameters that cannot be deployed on embedded devices,a lightweight tea bud detection method based on YOLOv8n is proposed.We construct a lightweight backbone network,MFBNet,introducing the MBConv module to significantly reduce model computation.Simultaneously,we incorporate the CBAM attention module into the backbone network to suppress irrelevant information,thereby enhancing the model's detection accuracy.Furthermore,the introduction of the AKConv module improves the VoVGSCSPC structure,proposing the innovative AVCStem module,which replaces the C2f module in the neck network,further reducing model parameters and enhancing the efficiency of embedded device deployment.Finally,we employ the GSConv module to replace all Conv modules in the neck network structure,facilitating fast model computation and increasing the detection speed of tender tea buds.The results indicate that the proposed model in this paper outperforms the original YOLOv8n model with a 3.5%improvement in mAP50,55.6%increase in FPS,and a 14.3%reduction in parameters.The model demonstrates strong robustness,meeting the requirements for lightweight and rapid detection of tender tea buds in complex scenarios.

tea bud detectionlightweightattention mechanismdeep learningYOLOv8n

潘海鸿、陈希良、钱广坤、申毅莉、陈琳

展开 >

广西大学机械工程学院 南宁 530004

梧州学院机械与资源工程学院 梧州 543002

茶叶嫩芽检测 轻量化 注意力机制 深度学习 YOLOv8n

广西创新驱动发展专项2022年梧州市科学研究与技术开发计划项目2022年梧州市科学研究与技术开发计划项目

AA18118002202202064202202039

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(7)