首页|基于YOLOv8的煤矿用钢丝绳损伤检测算法

基于YOLOv8的煤矿用钢丝绳损伤检测算法

扫码查看
煤矿用钢丝绳在矿井作业中发挥着重要的应用价值,其可靠性直接关系到矿山运转效率以及工作人员的生命安全.针对现有钢丝绳表面缺陷检测精度较低、检测效率不足的问题,本文提出一种改进型YOLOv8检测算法YOLO_BF,首先在骨干网路中引入改进型双层链路注意力机制(BiFormer)加强模型对图像的分析能力和信息融合能力,显著提高模型的精度.其次嵌入重复加权双向特征金字塔网路(BiFPN)提高网络缺陷特征提取能力,并在此基础上使用WIoU提高模型收敛速度,最后使用幻影卷积(GhostConv)替换传统卷积实现模型轻量化.相比原始基础网络YOLOv8n,本文所设计网络准确率、召回率和平均精度分别提升2.3%、3.3%、5.2%,更符合钢丝绳损伤检测的实际应用要求.
YOLOv8-based surface damage detection of mine wire rope
The wire rope used in coal mine plays an important application value in mine operation,and its reliability is directly related to the operation efficiency of the mine and the life safety of the staff. Aiming at the problems of low detection accuracy and insufficient detection efficiency of existing wire rope surface defects. This paper proposes an improved YOLOv8 detection algorithm YOLO_BF. Firstly,an improved double-layer link attention mechanism (BiFormer) is introduced into the backbone network to enhance the model 's ability to analyze images and information fusion,which significantly improves the accuracy of the model. Secondly,the repeated weighted bidirectional feature pyramid network (BiFPN) is embedded to improve the ability of network defect feature extraction. On this basis,WIoU is used to improve the convergence speed of the model. Finally,GhostConv is used to replace the traditional convolution to realize the lightweight of the model. Compared with the original basic network YOLOv8n,the accuracy,recall and average accuracy are increased by 2.3%,3.3% and 5.2% respectively.It is more in line with the practical application requirements of wire rope damage detection.

wire ropedefect detectionYOLOattention mechanismloss function

李志星、杨啸龙、李天昊、王宁宁

展开 >

北京建筑大学机电与车辆工程学院 北京 100000

洛阳理工学院智能制造学院 洛阳 471000

钢丝绳 缺陷检测 YOLO 注意力机制 损失函数

北京市属高校基本科研业务费项目河南省高等学校重点科研项目河南省自然科学基金北京建筑大学研究生创新项目

X2105323A460020242300420044PG2024136

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(9)