首页|结合帧间差异检测的固定场景视频压缩与重建

结合帧间差异检测的固定场景视频压缩与重建

扫码查看
近年来,高清和超高清监控摄像头的广泛部署促使了各类监控等固定场景类视频数据量的急剧增加.对视频的存储和传输造成了巨大压力.为了进一步去除固定场景类视频中的冗余数据,本文提出了一种新颖的压缩与重建方法.通过背景提取和结合帧间前景差异检测的前景提取与压缩方法,大量去除视频中的数据冗余.实验结果表明,本文方法与MPEG-4相比,在更高的压缩率上实现了更高的视频重建性能,与H.264、H.265和DCVC-DC相比,本文所提方法在压缩性能上依次分别提升了82.75%、76.19%和59.56%,并且保持了较高的视频重建水平,从而有效地缓解了固定场景类视频的存储和传输压力.
Integrated inter-frame difference detection for fixed-scene video compression and reconstruction
In recent years,the widespread deployment of high-definition and ultra-high-definition surveillance cameras has led to a significant increase in the volume of fixed-scene video data,such as surveillance videos. This sharp rise in data has imposed tremendous pressure on video storage and transmission. To further eliminate redundancy in fixed-scene videos,this paper proposes a novel compression and reconstruction method. By employing background extraction and an inter-frame foreground difference detection-based foreground extraction and compression approach,a substantial amount of data redundancy is removed from the videos. Experimental results show that,compared to MPEG-4,the proposed method achieves higher video reconstruction performance at a higher compression ratio. Compared to H.264,H.265,and DCVC-DC,the proposed method improves compression performance by 82.75%,76.19%,and 59.56% respectively,while maintaining a high level of video reconstruction quality. This effectively alleviates the storage and transmission pressure of fixed-scene videos.

computer visiondeep learningvideo compressionimage segmentationbackground modeling

李萌、黄宏博、郑曜林、许龙飞

展开 >

北京信息科技大学计算机学院 北京 100101

北京信息科技大学计算智能研究所 北京 100192

计算机视觉 深度学习 视频压缩 图像分割 背景建模

国家自然科学基金

62376286

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(9)