首页|基于雷达RCS数据的空间目标识别算法研究

基于雷达RCS数据的空间目标识别算法研究

扫码查看
近年来,深度学习在雷达目标识别领域取得了突破性进展,但基于雷达散射截面积数据的深度学习目标识别算法研究相对甚少.此外,空间目标雷达信号容易受噪声影响,导致目标识别准确率低.本文提出了一种端到端的时频特征融合神经网络TFF-Net用于实现基于RCS序列数据的空间目标识别.首先使用时频分析方法将RCS序列数据转化为二维时频数据来降低噪声干扰,其次使用TFF-Net提取时频数据的深层特征.TFF-Net先利用卷积神经网络捕获目标空间特征,接着采用双向长短时记忆网络来建模时序信息,再通过时间注意力网络自适应地关注时频数据中重要的序列.最后,在空间目标数据集上进行了算法对比实验.结果表明,所提出算法的空间目标识别精度达到95.8%,明显高于当前一些主流雷达目标识别算法,且在低信噪比情况下分类精度也优于其他算法,具有更好的噪声鲁棒性.
Research on space object recognition algorithm based on radar RCS data
In recent years,deep learning has achieved breakthrough progress in radar target recognition. However,research on deep learning target recognition algorithms based on radar cross-section (RCS) data is relatively scarce. Additionally,space target radar signals are easily affected by noise,resulting in low target recognition accuracy. This paper proposes an end-to-end Time-Frequency Feature Fusion Neural Network (TFF-Net) for space target recognition based on RCS sequence data. First,time-frequency analysis methods are used to convert the RCS sequence data into two-dimensional time-frequency data to reduce noise interference. Then,TFF-Net is used to extract deep features from the time-frequency data. TFF-Net first uses a convolutional neural network to capture spatial features of the targets,then employs a bidirectional long short-term memory network to model temporal information,and finally applies a temporal attention network to adaptively focus on important sequences in the time-frequency data. Comparative experiments were conducted on a space target dataset. The results show that the proposed algorithm achieves a space target recognition accuracy of 95.8%,significantly higher than several current mainstream radar target recognition algorithms. Furthermore,the classification accuracy under low signal-to-noise ratio conditions is also superior to other algorithms,demonstrating better noise robustness.

radar target recognitionradar cross sectiontime frequency analysisneural networks

张裕、李建鑫、朱勇建、马腾

展开 >

上海应用技术大学计算机科学与信息工程学院 上海 201418

深圳技术大学工程物理学院 深圳 518118

空间目标识别 雷达散射截面积 时频分析 神经网络

上海市自然科学基金

21ZR1462600

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(10)
  • 12