首页|基于雷达RCS数据的空间目标识别算法研究

基于雷达RCS数据的空间目标识别算法研究

Research on space object recognition algorithm based on radar RCS data

扫码查看
近年来,深度学习在雷达目标识别领域取得了突破性进展,但基于雷达散射截面积数据的深度学习目标识别算法研究相对甚少.此外,空间目标雷达信号容易受噪声影响,导致目标识别准确率低.本文提出了一种端到端的时频特征融合神经网络TFF-Net用于实现基于RCS序列数据的空间目标识别.首先使用时频分析方法将RCS序列数据转化为二维时频数据来降低噪声干扰,其次使用TFF-Net提取时频数据的深层特征.TFF-Net先利用卷积神经网络捕获目标空间特征,接着采用双向长短时记忆网络来建模时序信息,再通过时间注意力网络自适应地关注时频数据中重要的序列.最后,在空间目标数据集上进行了算法对比实验.结果表明,所提出算法的空间目标识别精度达到95.8%,明显高于当前一些主流雷达目标识别算法,且在低信噪比情况下分类精度也优于其他算法,具有更好的噪声鲁棒性.
In recent years,deep learning has achieved breakthrough progress in radar target recognition. However,research on deep learning target recognition algorithms based on radar cross-section (RCS) data is relatively scarce. Additionally,space target radar signals are easily affected by noise,resulting in low target recognition accuracy. This paper proposes an end-to-end Time-Frequency Feature Fusion Neural Network (TFF-Net) for space target recognition based on RCS sequence data. First,time-frequency analysis methods are used to convert the RCS sequence data into two-dimensional time-frequency data to reduce noise interference. Then,TFF-Net is used to extract deep features from the time-frequency data. TFF-Net first uses a convolutional neural network to capture spatial features of the targets,then employs a bidirectional long short-term memory network to model temporal information,and finally applies a temporal attention network to adaptively focus on important sequences in the time-frequency data. Comparative experiments were conducted on a space target dataset. The results show that the proposed algorithm achieves a space target recognition accuracy of 95.8%,significantly higher than several current mainstream radar target recognition algorithms. Furthermore,the classification accuracy under low signal-to-noise ratio conditions is also superior to other algorithms,demonstrating better noise robustness.

radar target recognitionradar cross sectiontime frequency analysisneural networks

张裕、李建鑫、朱勇建、马腾

展开 >

上海应用技术大学计算机科学与信息工程学院 上海 201418

深圳技术大学工程物理学院 深圳 518118

空间目标识别 雷达散射截面积 时频分析 神经网络

上海市自然科学基金

21ZR1462600

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(10)
  • 12