首页|基于改进麻雀优化与SVR滑坡位移预测

基于改进麻雀优化与SVR滑坡位移预测

扫码查看
针对滑坡位移具有高度非线性和复杂性,难以利用传统优化算法结合人工智能方法进行更合理、准确的预测建模的问题,本文提出一种Lévy飞行策略的混沌麻雀优化算法(CLSSA)-变分模态分解(VMD)-支持向量回归(SVR)的滑坡位移预测模型.首先利用CLSSA优化VMD分解参数对滑坡位移时间序列进行分解,其次采用CLSSA-SVR模型对VMD分解子序列进行预测,最后通过叠加子序列预测数据求出累计位移预测.以白水河滑坡为例,对该模型进行验证,实验结果表明,所提方法在最终累计位移预测结果中 MAE为2.24 mm,RMSE为3.37 mm,R2 为0.995,相对于麻雀优化算法-变分模态分解-支持向量回归(SSA-VMD-SVR),所改进的优化算法增加了VMD的自适应能力,提高滑坡位移各分量预测效率.
Landslide displacement prediction based on improved sparrow optimization with SVR
Aiming at the problem that landslide displacement is highly nonlinear and complex,and it is difficult to use traditional optimization algorithms combined with artificial intelligence methods for more reasonable and accurate predictive modeling,a Lévy flight strategy chaotic sparrow optimization algorithm(CLSSA)-variable modal decomposition(VMD)-support vector regression(SVR)landslide displacement prediction model is proposed.Firstly,CLSSA is used to optimize the VMD decomposition parameters to decompose the landslide displacement time series,secondly,the CLSSA-SVR model is used to predict the VMD decomposition subsequence,and finally,the cumulative displacement prediction is derived by superimposing the subsequence prediction data.The model is validated by taking the Baishui River landslide as an example,and the experimental results show that the proposed method has an MAE of 2.24 mm,an RMSE of 3.37 mm,and an R2 of 0.995 in the final cumulative displacement prediction,and relative to the sparrow optimization algorithm-variable modal decomposition-support vector regression(SSA-VMD-SVR),the improved optimization algorithm increases the adaptive ability of VMD that improves the efficiency of landslide displacement prediction for each component.

landslide displacement predictionLévy flight strategychaotic sparrow optimization algorithmvariational modal decompositionsupport vector machines

黄奕朝、孙希延、纪元法、卢伟萍

展开 >

桂林电子科技大学广西精密导航技术与应用重点实验室 桂林 541004

桂林电子科技大学信息与通信学院 桂林 541004

卫星导航定位与位置服务国家地方联合工程研究中心 桂林 541004

南宁桂电电子科技研究院有限公司 南宁 530031

广西气象科学研究所 南宁 530022

展开 >

滑坡位移预测 Lévy飞行策略 混沌麻雀优化算法 变分模态分解 支持向量机回归

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(20)