首页|基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测

基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测

扫码查看
针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题.本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法.首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量.随后,将所有分量输入LSTM中.为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法.最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证.结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性.
Short-term power load forecasting based on generative adversarial networks and EMD-ISSA-LSTM
Aiming at the inherent instability and nonlinearity of power load,which makes it difficult to improve the accuracy of short-term power load prediction.In this paper,we propose a short-term power load prediction method based on the combination of EMD and LSTM.First,the original signal is decomposed into a series of eigenmode functions and a residual quantity using EMD.Subsequently,all the components are input into the LSTM.To further improve the accuracy of load forecasting and optimize the generalization ability of the model,an improved sparrow search algorithm is introduced to optimize LSTM hyperparameters for large component signals,and a table generative adversarial network is introduced to generate new data samples for raw load data,forming a short-term power load forecasting method based on table generative adversarial network and EMD-ISSA-LSTM.Finally,the load data of the ninth mathematical modeling competition for electricians and the load data of a prefecture and city in Hunan Province containing distributed power sources are used to validate the effect,and the results show that the mean absolute percentage error of the model under the two datasets is 2.37%and 2.26%,respectively.The validity of the method is verified.

short-term power load forecastingmodal decompositionlong short-term memory neural networksimproved sparrow search algorithmgenerative adversarial network

曾进辉、苏旨音、肖锋、刘颉、孙贤水

展开 >

湖南工业大学电气与信息工程学院 株洲 412007

短期电力负荷预测 经验模态分解 长短期记忆神经网络 改进麻雀搜寻算法 生成对抗网络

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(20)