首页|基于电振联合特征的高压断路器多故障诊断

基于电振联合特征的高压断路器多故障诊断

扫码查看
针对利用单一信号诊断高压断路器多种故障的局限性,本文提出了一种电振联合特征的高压断路器多故障诊断方法.首先,对高压断路器合闸操作过程中的线圈电流信号用峰值谷值算法提取电流波形关键时间节点及对应幅值构建电气特征;对振动信号进行VMD分解,计算不同模态分量下的多尺度散布熵值构建机械特征;然后,将电气与机械特征向量进行主成分分析与降维,根据得到的方差贡献率生成电振联合特征,有效解决了特征向量冗余问题;最后将不同故障下的电振联合特征输入到模糊C均值聚类中,精准分类出高压断路器故障类型.实验结果表明,所提方法比单一信号故障诊断准确率更高,分类效果更显著,并在不同诊断模型中进行验证,识别准确率达98.6%,可以有效实现高压断路器多故障诊断.
Multi-fault diagnosis of high-voltage circuit breakers based on joint characteristics of electric vibration
Addressing the constraints of utilizing a single signal for diagnosing various faults in high-voltage circuit breakers.In this paper,a multi-fault diagnosis method for high-voltage circuit breakers with joint characteristics of electric vibration is proposed.Firstly,extracting key time nodes of current waveforms and corresponding amplitudes of coil current signals during high-voltage circuit breaker closing operation by peak-valley algorithm to construct electrical features;and perform a variational modal decomposition(VMD)of the vibration signal,calculating multiscale dispersion entropy values for different modal components to construct mechanical characteristics.Next,he electrical and mechanical feature vectors were subjected to principal component analysis with dimensionality reduction,generating joint features of electric vibration based on the obtained variance contribution,effectively solving the feature vector redundancy problem;finally,the combined characteristics of signals under different faults are input into fuzzy cluster analysis,successfully identified the specific fault type in the high-voltage circuit breaker.According to the experimental findings,the proposed method demonstrates superior accuracy in fault diagnosis compared to single-signal approaches.It classifies effectively,validated in different diagnostic models with 98.6%.It successfully enables the diagnosis of faults in high-voltage circuit breakers.

high voltage circuit breakercurrent signalvibration signaljoint feature

万书亭、郭胡森、豆龙江、丁佳毅

展开 >

华北电力大学机械工程系 保定 071003

河北省电力机械装备健康维护与失效预防重点实验室 保定 071003

高压断路器 电流信号 振动信号 联合特征

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(20)