首页|基于改进YOLOv8s的雾天目标检测算法

基于改进YOLOv8s的雾天目标检测算法

扫码查看
针对现实场景中雾天目标检测困难的问题,提出了一种改进YOLOv8s的雾天目标检测方法.设计前端模块Edge-Dehaze,利用去雾网络和检测网络联合训练并通过Sobel算子强化雾天图像边缘信息以改善雾天场景下的检测效果;提出混合注意力特征融合模块HAFM,通过并行注意力机制和特征图之间的信息交互与融合提升模型对重要特征的关注度;设计轻量化共享注意力卷积检测头LSACD,通过共享卷积降低检测头参数量,在共享层中引入SEAM注意力机制缓解雾天目标检测的遮挡问题.在RTTS数据集上的实验结果表明,改进后的YOLOv8s网络相对原始YOLOv8s网络mAP50 提升了1.8%,mAP50-95 提升了1.7%,参数量基本持平,从而验证了该算法在雾天目标检测上具有较高的准确性及实用性.
Object detection algorithm for foggy conditions based on improved YOLOv8s
To address the challenges of target detection in foggy conditions in real-world scenarios,this paper proposes an improved foggy target detection method based on YOLOv8s.The design includes a front-end module,Edge-Dehaze,which employs joint training of dehazing and detection networks and uses the Sobel operator to enhance edge information in foggy images,thereby improving detection performance in foggy environments.The proposed hybrid attention feature fusion module(HAFM)utilizes parallel attention mechanisms to enhance information interaction and fusion between feature maps,increasing the model's focus on critical features.Additionally,a lightweight shared attention convolutional detection(LSACD)head is designed,which reduces the parameter count of the detection head through shared convolutions and incorporates the SEAM attention mechanism in the shared layer to alleviate occlusion issues in foggy target detection.Experimental results on the RTTS dataset demonstrate that the improved YOLOv8s network achieves a 1.8%increase in mAP50 and a 1.7%increase in mAP50-95 compared to the original YOLOv8s network,with comparable parameter counts,thereby validating the high accuracy and practicality of the proposed method in foggy target detection.

YOLOv8scomputer visionfoggy object detectionattention mechanismsfeature fusion

刘震、杨贤昭、陈洋、曾思航

展开 >

武汉科技大学冶金自动化与检测技术教育部工程研究中心 武汉 430081

YOLOv8s 计算机视觉 雾天目标检测 注意力机制 特征融合

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(20)