首页|基于GRU-A3C的四旋翼无人机视觉避障系统

基于GRU-A3C的四旋翼无人机视觉避障系统

扫码查看
针对基于深度强化学习的四旋翼无人机视觉避障系统,模型训练速度慢、计算量大和响应不及时的问题,设计了一种轻量化且模型训练速度快的系统.该系统首先以深度图像和无人机自身状态信息作为输入,然后使用一种基于GRU结构的A3C算法(GRU-A3C),输出连续动作空间并结合课程学习的方法进行训练加速.最后,以A3C为基线进行消融实验.实验结果为:在训练1 000轮次时,利用课程学习方法训练的GRU-A3C算法成功率为0.28,A3C算法成功率为0.2;在训练5 000轮次时,利用课程学习方法训练的GRU-A3C算法成功率为0.72,A3C算法成功率0.62.数据表明,该系统可以有效加快模型收敛速度,缩短训练时间并提高训练效果.
Visual obstacle avoidance system for quadrotor UAVbased on GRU-A3C
Aiming at the problems of slow model training speed,large amount of computation and untimely response of quadrotor UAV vision obstacle avoidance system based on deep reinforcement learning,a lightweight and fast model training system is designed.The system first takes the depth image and the UAV's own state information as input,and then uses a GRU structure-based A3C algorithm(GRU-A3C)to output continuous action space and combine the curriculum learning method for training acceleration.Finally,A3C was used as the baseline for ablation experiments.The experimental results are as follows:after 1 000 rounds of training,the success rate of GRU-A3C algorithm trained using curriculum learning method is 0.28,and the success rate of A3C algorithm is 0.2.After 5 000 rounds of training,the success rate of GRU-A3C algorithm trained using curriculum learning method was 0.72,and the success rate of A3C algorithm was 0.62.The data show that this system can effectively accelerate the model convergence speed,shorten the training time and improve the training effect.

deep reinforcement learningquadrotor UAVA3Ccurriculum learningvisual obstacle avoidance

马澳华、邢关生

展开 >

青岛科技大学自动化与电子工程学院 青岛 266061

深度强化学习 四旋翼无人机 A3C 课程学习 视觉避障

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)