首页|基于改进SegFormer网络的线激光分割和中心提取方法

基于改进SegFormer网络的线激光分割和中心提取方法

扫码查看
线结构光条纹中心线提取是三维测量技术的关键,测量工件表面易反光等环境因素的干扰使中心线提取的精度低、稳定性差.本文提出了一种改进的激光中心线提取方法,首先在SegFormer网络编码层 Transformer backbone分支提取线激光图像全局特征的基础上,引入Vgg16 backbone分支提取线激光图像中的浅层轮廓信息,再添加 MASPP模块来提高模型对线形目标的分割效果,提高了激光条纹区域的分割精度,通过改进SegFormer网络模型为后续中心线提取提供高质量的图像源,再利用Steger法实现对激光中心线的精确提取.实验结果表明,该方法计算速度与Steger算法相比提升了42%,其提取的精度提升约0.3个像素,并适用于多种复杂环境,在工业检测上满足精度和稳定性的要求.
Improved SegFormer network-based line laser segmentation and center extraction method
The extraction of the centerline from multi-line structured light is a critical technique in three-dimensional measurement technologies.Reflectivity and other environmental factors on the surface of the object being measured commonly result in low accuracy and instability in extracting the centerline.This thesis proposes an enhanced laser centerline extraction method.It begins by harnessing global features from line laser images,extracted through the Transformer backbone branch within the encoding layer of the SegFormer network.Additionally,the method integrates the Vgg16 backbone branch to capture shallow contour details from the line laser images.The incorporation of the MSASPP module significantly refines the model's ability to segment linear targets,thus elevating the segmentation accuracy within the laser stripe area.This refined SegFormer network model supplies a superior image source for subsequent centerline extractions,utilizing the Steger method to achieve precise detections.Experimental evidence indicates a 42%enhancement in computational speed over the Steger algorithm,with a notable increase in extraction accuracy by approximately 0.3 pixel.This method proves effective in diverse and complex environments,satisfying industrial demands for precision and stability in inspections.

deep learningline structured lightlight strip center extraction

韩佳鑫、王生怀、钟明、陈哲、张伟

展开 >

湖北汽车工业学院机械工程学院 十堰 442000

武汉筑梦科技有限公司 武汉 430000

深度学习 线结构光 光条中心提取

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)