首页|基于YOLO的多模态钢轨表面缺陷检测方法

基于YOLO的多模态钢轨表面缺陷检测方法

扫码查看
针对钢轨表面缺陷区域与背景区域特征相似特性导致的模型检测性能下降问题,本文研究高实时性轻量级目标检测网络 YOLOv8n,提出一种基于 YOLO 的多模态钢轨表面缺陷检测算法 RailBiModal-YOLO.改进YOLOv8n模型:构建双流主干网络结构并行提取多尺度深度信息和RGB信息;为降低低质量图像特征相互干扰并能充分利用双模态互补信息,设计了一种即插即用的双模态特征交互修正融合模块;在多尺度特征构建阶段引入EVCBlock,增强RGB-D特征层的层内信息交互,提高小缺陷检测能力.以东北大学NEU-RSDDS-AUG作为实验数据集,将数据集自定义划分为4种典型缺陷类型,以平均精度均值mAP、每秒检测帧数FPS、参数量作为主要评价指标,实验结果表明:所提模型与原模型相比,在保证高检测速度的同时,mAP@50,mAP@50:95分别提高1.8%和3.2%,并具有更强鲁棒性.
Multi-modal rail surface defect detection method based on YOLO
To tackle the performance decline of models detecting rail surface defects due to the similarity between the characteristics of defect areas and background areas,this paper explores the high real-time,lightweight object detection network YOLOv8n and proposes a multi-modal rail surface defect detection algorithm,named RailBiModal-YOLO.Improvements to the YOLOv8n model involve the construction of a dual-stream backbone network structure that allows for the parallel extraction of multi-scale depth and RGB information;a plug-and-play dual-modal feature interaction and revision fusion module is designed to minimize the interference of low-quality image features and to fully leverage the complementary information from both modalities;the EVCBlock is introduced during the multi-scale feature construction phase to enhance the intra-layer information interaction within the RGB-D feature layers,thereby improving the detection of small defects.The Northeastern University NEU-RSDDS-AUG dataset is utilized for experiments,which has been custom-divided into four typical defect types,with mean average precision(mAP),frames per second(FPS),and the number of parameters serving as the primary evaluation metrics.It is demonstrated by the experimental results that the proposed model,in comparison to the original model,not only maintains high detection speed but also achieves enhancements in mAP@50 and mAP@50:95 by 1.8%and 3.2%,respectively,along with exhibiting increased robustness.

YOLOv8ndefect detectionmultimodalRGB-Dfeature fusiondeep learning

孙铁强、魏光辉、宋超、肖鹏程

展开 >

华北理工大学人工智能学院 唐山 063210

华北理工大学河北工业智能感知重点实验室 唐山 063210

YOLOv8n 缺陷检测 多模态 RGB-D 特征融合 深度学习

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)