首页|基于SVD与混合神经网络模型的自动调制识别

基于SVD与混合神经网络模型的自动调制识别

扫码查看
随着现代无线通信环境中调制类型复杂性和多样性的显著增加,对自动调制识别技术的性能提出了更高要求.文章提出一种由卷积神经网络、挤压与激励模块、长短期记忆网络、门控循环单元和全连接层网络组成的混合神经网络模型,提升AMR技术的效率和准确性.首先,针对低信噪比环境下调制信号识别精度受限的问题,引入奇异值分解算法对接收的I/Q信号进行去噪,在提高信号质量的基础上提高低信噪比下调制信号的识别精度.然后,利用卷积神经网络对去噪后的信号进行多通道空间特征提取,随后加入挤压与激励模块提升特征提取的针对性,将门控循环单元和长短期记忆网络相结合,捕获信号的时间序列特征,最后,通过全连接层网络将提取的特征映射到调制方式的分类空间进行分类识别.实验结果表明,提出的网络模型在低信噪比环境下显著提高了调制识别精度,在RadioML2016.10b数据集上的平均识别准确率达到了64.63%,同时增强和提高了对QAM16与QAM64的区分与识别精度.
Automatic modulation recognition based on SVD and hybrid neural network model
With the significant increase in the complexity and diversity of modulation types in modern wireless communication environments,higher requirements are placed on the performance of automatic modulation recognition technology.This paper proposes a hybrid neural network model consisting of a convolutional neural network,a squeeze and excitation module,a long short-term memory network,a gated recurrent unit,and a fully connected layer network to improve the efficiency and accuracy of AMR technology.First,to address the problem of limited modulation signal recognition accuracy in low signal-to-noise ratio environments,a singular value decomposition algorithm is introduced to denoise the received I/Q signal,thereby improving the recognition accuracy of modulation signals under low signal-to-noise ratios while improving signal quality.Then,a convolutional neural network is used to extract multi-channel spatial features from the denoised signal.Then,a squeeze and excitation module is added to improve the pertinence of feature extraction.The gated recurrent unit and the long short-term memory network are combined to capture the time series characteristics of the signal.Finally,the extracted features are mapped to the classification space of the modulation mode through a fully connected layer network for classification and recognition.Experimental results show that the proposed network model significantly improves the modulation recognition accuracy in a low signal-to-noise ratio environment.The average recognition accuracy on the RadioML2016.10b dataset reaches 64.63%.At the same time,it enhances and improves the distinction and recognition accuracy of QAM16 and QAM64.

automatic modulation recognitionsingular value decompositionconvolutional neural networksgated recurrent unitslong short-term memory network

周顺勇、陆欢、胡琴、彭梓洋、张航领

展开 >

四川轻化工大学自动化与信息工程学院 宜宾 644000

四川轻化工大学人工智能四川省重点实验室 宜宾 644000

自动调制识别 奇异值分解 卷积神经网络 门控循环单元 长短期记忆网络

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)