首页|杂波背景下多普勒测速雷达信号处理算法研究

杂波背景下多普勒测速雷达信号处理算法研究

扫码查看
多普勒测速雷达具有测速范围广、测速精度高及可靠性强的优点,广泛应用于我国轮轨及磁浮交通领域.多普勒测速雷达在测速过程中需要考虑杂波对多普勒信号的干扰,因此在轨道地杂波背景下研究信号处理方法对提高测速精度、保障行车安全具有重要意义.首先对Kernel分布、Weibull分布及Gamma分布这3种典型的概率统计模型进行了理论分析,基于77 GHz+24 GHz双频车载测速雷达进行了杂波测量实验,采集了实际轨道面地杂波数据,并对实测数据进行了拟合分析,结果表明,该车载测速雷达的轨道地杂波数据统计特性服从Kernel分布.在杂波背景下,首先利用最小均方自适应滤波方法对实测信号进行去噪处理,并使用改进Burg算法进行频谱估计实现了高精度速度测量,实验验证了算法能够有效抑制杂波提高信噪比,在低速状态下测速误差小于0.5 km/h,当速度大于50 km/h时,测速误差小于0.5%.
Research on signal processing algorithm of Doppler speed measurement radar under clutter background
Doppler speed measurement radar has the advantages of wide range of speed measurement,high speed measurement accuracy and strong reliability,and is widely used in the field of wheel-rail and maglev transportation in China.It is necessary to consider the interference of clutter to Doppler signal in the process of speed measurement radar,so it is important to study the signal processing method under the background of track ground clutter to improve the accuracy of speed measurement and ensure the safety of driving.In this paper,three typical probabilistic and statistical models,namely Kernel distribution,Weibull distribution and Gamma distribution,are theoretically analyzed,clutter measurement experiments are carried out using 77 GHz+24 GHz dual-band vehicle-mounted velocity radar.The results show that the statistical characteristics of the track ground clutter data of the vehicle-mounted speed measurement radar developed in this paper follow the Kernel distribution.In the background of clutter,firstly,the least mean square adaptive filtering method is used to de-noise the measured signal,and the improved Burg algorithm is used to estimate the spectrum to achieve high-precision velocity measurement.Experiments have verified that the proposed algorithm can effectively suppress clutter and improve the signal-to-noise ratio,and the final velocity measurement error is less than 0.5 km/h at low speed and less than 0.5%when the speed is greater than 50 km/h.

Kernel distributionnoise wave peculiarityLMS adaptive filteringimproved Burg algorithmDoppler radar

彭泽胄、郜洪民、胡伟东、蒋环宇、刘庆国

展开 >

中国铁道科学研究院集团有限公司通信信号研究所 北京 100081

北京理工大学集成电路与电子学院 北京 100081

Kernel分布 杂波特性 LMS自适应滤波 改进Burg算法 多普勒雷达

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)